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FOREWORD 
Since its establishment in 1976, Acharya Nagarjuna University has been forging 

ahead in the path of progress and dynamism, offering a variety of courses and research 

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the 

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG, 

PG levels apart from research degrees to students from over 221 affiliated colleges spread 

over the two districts of Guntur and Prakasam. 

The University has also started the Centre for Distance Education in 2003-04 with 

the aim of taking higher education to the doorstep of all the sectors of the society. The 

centre will be a great help to those who cannot join in colleges, those who cannot afford 

the exorbitant fees as regular students, and even to housewives desirous of pursuing 

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A., 

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., 

courses at the PG level from the academic year 2003-2004 onwards. 

To facilitate easier understanding by students studying through the distance mode, 

these self-instruction materials have been prepared by eminent and experienced teachers. 

The lessons have been drafted with great care and expertise in the stipulated time by these 

teachers. Constructive ideas and scholarly suggestions are welcome from students and 

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of 

this distance mode of education. For clarification of doubts and feedback, weekly classes 

and contact classes will be arranged at the UG and PG levels respectively. 

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in the 

years to come, the Centre for Distance Education will go from strength to strength in the 

form of new courses and by catering to larger number of people. My congratulations to 

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who 

have helped in these endeavors. 

Prof. K.GangadharaRao 
M.Tech.,Ph.D., 

   Vice-Chancellor I/c  
        Acharya Nagarjuna University 
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CODE:104ST24 
M.Sc DEGREE EXAMINATION 

First Semester 

Statistics :: Paper IV- Sampling Theory  

Time: Three hours Maximum:70 Marks 

Answer ONE question from each unit (5x14=70) 
 

UNIT – I 
1. (a)  Discuss the optimum allocation in stratified sampling. Obtain the variance of an estimate of  

              population proportion with stratified random sampling. 
(b)  Define systematic sampling. If a population consists of a linear trend, then prove that        

           

        
     st sys n R

Var y Var y Var y 
 

(or) 
2. (a)  Discuss the estimation of gain in precision due to stratification. 
     (b) Explain circular systematic sampling. Obtain the method of estimation of sample size with  

                    continuous data. 
 

UNIT – II 
3. (a)  What is cluster sampling? Obtain an unbiased estimator of population total based on cluster 

              sampling, with clusters of equal size, and derive an expression for the sampling variance of  
                    this estimator. 

    (b)  How do you determine the optimum cluster size so as to minimize the variance for a fixed        
           cost.   

(or) 
   4. (a)  Explain PPS sampling with replacement (wr-pps).  Obtain an unbiased estimator of the  

                    population total and variance of the estimator under wr-pps.  Also derive the estimator for  
                    the variance. 
 (b) Define Horvitz – Thompson estimator of the population mean and derive the variance of this  
                    estimator.                                                                                                                                                                                                                                  

        
UNIT – III 

5. (a) Derive an expression for estimating the variance of population mean in two stage sampling  
                   where SRSWOR is adopted at both stages.  
              (b) Obtain an estimator for the population mean under double sampling with SRSWR at the first  
                    stage and SRSWR at the second stage.  

(or) 
6.  (a) Obtain the variance of an estimate for the population mean under double sampling with  

                     SRSWR at the first stage and SRSWR at the second stage.  
               (b)  Discuss the problem of optimal allocation in double sampling.   

 
UNIT – IV 

7. (a) What is double sampling? In case of double sampling for difference estimation, propose an      
                    estimator for the population mean and derive its variance, stating the necessary assumptions,  
                    If any. 

(b) Distinguish between multistage sampling and multiphase sampling. 
(or) 



8.   (a) What are the various sources and types of non-sampling errors. Explain in detail? 
        (b) Briefly explain the concepts i) Hansen and ii) Hurwitz Technique and Deming’s Model. 

 
UNIT – V 

9. (a) Derive the bias and mean square error of regression estimator of the population total assuming   
                   SRSWR for the units.  
             (b) Explain difference estimation.  Define a separate difference estimator for population mean and  
                   obtain its variance. 

(or) 
10. (a) Explain ratio estimation. Obtain the variances of ratio estimates in stratified sampling. 

            (b) Obtain the several of the regression estimation. Obtain the variance of regression coefficient  
                  with pre-assigned value.  
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LESSON-1 

SYSTEMATIC SAMPLING – AN OVERVIEW 
 
OBJECTIVES: 
 

After study the lesson, the student is able to: 
• Visualize the reasons for studying Systematic Sampling 
• To identify the principal elements of Population 
• Simple Random Sampling with Replacement / Without Replacement 
• Variance of Systematic Sample mean in terms of Stratification  
• Comparison between Systematic Sampling and Stratified Sampling 
• To select representative sample from a population. 

 
STRUCTURE: 
 

1.1. Introduction 

1.2. Description of Systematic Sampling 

1.3. Advantages over Simple Random Sampling 

1.4. Variance of Systematic Sampling 

1.5. Summary 

1.6. Key words 

1.7. Self-Assessment Questions 

1.8. Suggested Readings 

 
1.1  INTRODUCTION: 
 
 Statistics is the science of data.  
 Data are the numerical values containing some information.  
  Statistical tools can be used on a data set to draw statistical inferences. These 
statistical inferences are in turn used for various purposes. For example, government uses 
such data for policy formulation for the welfare of the people, marketing companies use the 
data from consumer surveys to improve the company and to provide better services to the 
customer, etc. Such data is obtained through sample surveys. Sample surveys are conducted 
throughout the world by governmental as well as non-governmental agencies. For example, 
“National Sample Survey Organization (NSSO)” conducts surveys in India, “Statistics 
Canada” conducts surveys in Canada, agencies of United Nations like “World Health 
Organization (WHO), “Food and Agricultural Organization (FAO)” etc. conduct surveys in 
different countries. 
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 POPULATION: 
Collection of all the sampling units in a given region at a particular point of time or a 
particular period is called the population. For example, if the medical facilities in a hospital 
are to be surveyed through the patients, then the total number of patients registered in the 
hospital during the time period of survey will the population. Similarly, if the production of 
wheat in a district is to be studied, then all the fields cultivating wheat in that district will be 
constitute the population. The total number of sampling units in the population is the 
population size, denoted generally by N. The population size can be finite or infinite (N is 
large). 
 

 CENSUS: 
The complete count of population is called census. The observations on all the sampling units 
in the population are collected in the census. For example, in India, the census is conducted at 
every tenth year in which observations on all the persons staying in India is collected. 
 

 SAMPLE: 
One or more sampling units are selected from the population according to some specified 
procedure. A sample consists only of a portion of the population units. Such a collection of 
units is called the sample. 
 
Population 

   Total : Y =
1

N

i
i

Y

 = Y1 + Y2 +Y3 ....+ YN 

     Mean Yഥ = ( Y1 + Y2 +Y3 ....+ YN  ) / N  = 
1

N

i
i

Y N

  

Sample: Total:
1

n

i
i

y

 = y1 + y2 +y3....+yn ,Then yത= ( y1 + y2 +y3 ....+ yn ) / n = 

1

n

i
i

y

 / n    

Result-1 
 
SRSWR: Show that sample mean is an unbiased estimate of the population mean.   

  Nn
E y Y  
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Proof:    
1 1

1 1
E E E

n n

N N

i iin i i

a Yia Yy
 

 
  

 
   ,  ∵  ( E(ai) = n/N ) 

Hence    n

Nn 1

1 1
E

ny i
i

Y
N

n
Y

N

  .     

 
Result-2 

SRSWOR: Show that    
n

f S
2

n
1V y  .where 

N

n
f   is called the sampling fraction and 

 f1  is called finite population correction (F.P.C).  

Where 

2

2 1

( )

N 1

N

i N
i

Y Y

S 







= Population scatterness of the observation from the mean values.  

Population Variance   2 2

1

1
( )

n

i
i

Y Y
N



  . 

Proof. We have      
22

n n nV y E y E y    
  ,[∵ 𝐸(𝑦ത௡) = 𝑌തே] 

   2 2
E (1)

Nny Y   

Consider,  
2

2

n

n
E E

i
i 1

1
yy

n
    
  

 
  

2

2

n1
E

i
i 1

y
n

 


 
  

)2(E
1 n

1

n

1j
ji

n

1i

2

i2 yyy
n

















 



 i

ji

 

In equation (2), Consider, 
n n N2 2 2

i iii
i 1 i 1 i 1

n
E E

N
y aY Y

  

   
    

   
   ∵  ( E(ai) = n/N ) 

 

  But  
N N2 22

i N
i 1 i 1

Ni NY YY Y
 

    

 N 
N N 22 2= + N-Yi Yii=1 i=1

Y Y N     22

N
N 1 NYS    

  Ysy
2

N

2
n

1i

2

i
N1N

N

n
E 








 



 

   2 22 2

N

n N 1 1n N
( )

N N Y N

n N
n i

NS S Y
  

    
  

In equation (2) consider, 

n n n n

i ji ji j
i 1 j 1 i 1 j 1

i j

E Ey y Y Ya a
   



            
 

 
 

N N

i j
i 1 j 1

n n 1

N N 1 Y Y
 




   

∵( E(ai aj ) = n(n-1)/N(N-1) ) 

∵( N-1) S2 =   
N

i 1

2
i NYY


   

                    = 
2

i
i 1

N

Y

  - 

2

N
NY  
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But we know that 

2
N N N

2

i i j
i 1 i 1 j 1

N

i
i 1

Y Y Y Y
  

 


    
 

 
2

N N N
2

i j i
i 1 i 1 i 1

N
i

i 1
i j

Y Y Y Y
  



 


 

   
2 22

N
1 N

NN Y YN S        

 2 22 2

N N
N 1 NN Y YS    ∵  S2  =  

N

i 1

2
i NYY


   

 
   

n n 2 22 2

N Ni j
i 1 j 1,

n n 1
E N 1 N ( )

N N 1
y y N Y Y

i j

iiS
 



              
  
  

  From equation (2) 

   
    2 2 2 22 2 2

2 N N Nn

n n 11 n
E N 1 n N 1 N

N N N 1y NY Y Yn
S S

                
 

 

  = 
ேିଵ

ே௡
𝑆ଶ +

௒തమ

ே
+

(௡ିଵ)

௡ே(ேିଵ)
𝑁ଶ𝑌ே

തതതଶ
  -

௡(௡ିଵ)(ேିଵ)

௡మே(ேିଵ)
𝑆ଶ −

௡(௡ିଵ)ே

௡ே(ேିଵ)
𝑌ே
തതതଶ
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2


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



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


1Nn

1n

1Nn

1nN

n
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N
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    



















1Nn
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2

N

2
2
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   

















1Nn

nNn
nN

nN
E Y

sy
2

N

2
2

n

 
 

22

N

n N 1N n

nN n N 1s Y


 
  

2 22

Nn

N n
E (3)

nNy s Y
     

 
 

Substitute equation (3) in equation (1) we get from equation (1) 

  2 2 22 2 2

N N Nn n

N n N n
V E

nN nNy y s sY YY
        

 
 

   
2 2

2

n

N n n
V 1 1

nN N n n
s sy s f

           
   

ቂ∵ 𝑓 =
௡

ே
ቃ 

Also we can write    2

n

1 1
V

n Ny s
   
   

 
Result-3: 

         Standard error    yvary   

     
2

S.E y 1 1
n

f f
n

s s     
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Result-4: 
         Unbiased estimate of   yV  is  yv  

      Where    
2

y 1
n

v f s  , where  
n

2

i 1

21

i(n 1) yys



    

Ŷ = Estimate of the total population. 
 
Result-5: 

     yVyNVŶV N
2 ൣ∵ 𝑌෠ = 𝑁𝑦ത൧ 

         We know that    
2

V y 1
n

fs   

Variance of yNŶ   is an estimate of the population total Y  is 

V(𝑌෠)=E൫(𝑌෠ − 𝑌ത൯
ଶ

=  
ேమௌమ

௡
ቀ

ேି௡

ே
ቁ =

ேమௌమ

௡
(1 − 𝑓) 

 
Result-6: Unbiased estimates of the variance of y  and yNŶ   are   

 

 
Result-7: Variance of the sample estimates, 

         Population proportion is unknown  
n

p;
N

A
P

a
  ;   𝑦ത =

∑ ௬೔
೙
೔

௡
=

௔

௡
= 𝑝 

         P: population proportion and p: sample proportion 
 
 
 

i.  
n

PQ

1N

nN
pV




  

ii.     N n pq
p̂ p

( 1)
v v

n N


 


 

Proof.  I. We have     2

SRSWOR

N n
V p V ( )

n nNy s


   

1N

PQN

Nn

nN








  

 
n

PQ

1N

nN
pV 




  

II. We have E(s2) =S2 =E( 2N n
s

Nn


) = 2N n

S
Nn


 

 

= E( .
1

N n npq

Nn n




) =Var(p) = E( .
1

N n pq

N n




) =Var(p) 

Hence v(p)= ( )

( 1)

N n pq

N n




, provides an unbiased estimate of Var(p). 

 

෍ 𝑌௜

ே

௜ୀଵ

= 𝐴 = 𝑁𝑃 

NY =
ே௉

ே
=P, ∑ 𝑌௜

ே
௜ୀଵ

2 =A=NP, 

2 2

1

1
( )

N 1

N

i N
i

y YS


 
   

( N-1) S2 =  
2

i
i 1

y
N


  - 

2

N
NY  

                    =NP-NP2 
S2= NP(1-P)/(N-1)=NPQ/(N-1) 

     
2

2 2

ˆ ˆ ˆy y y
ˆV y 1 (1 ) /

nN Sv f Ns f ns s s      
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Result-8: If   n,,2,1i,YX ii
  are the pair of the variable defined for every i

th  unit of 

the population and  y
nn

,x  are the corresponding sample mean of SRSWOR of size n'' . 

Then prove that      
N

i iN Nn n 1

N n 1
cov ,

nN N 1y X YX Y
i

x



  

   

Proof:   Let 
i ii

, i 1,2, , NU X Y      





N

1i
i

N

1i
i

N

1i
i YXU N

1

N

1

N

1
 

YXU NNN
  

Similarly yu nnn
 x  

  Consider    
2

n
V E

n nEu u u     

         V(𝑢ത௡) = 𝐸[𝑢ത௡ − 𝑈ഥே]ଶ  
R.H.S:E(𝑢ത௡ − 𝑈ഥே)ଶ = 𝐸[(�̅�௡ + 𝑦ത௡) − (𝑋തே + 𝑌തே)]ଶ 

   
2

E
N Nn nyX Yx       

   
22

N Nn n
E E 2EN Nn ny yX Y X Yx x

       
        

 
       =E[�̅�௡ − 𝐸(�̅�௡)]ଶ + 𝐸[𝑦ത௡ − 𝐸(𝑦ത௡)]ଶ+2E[{�̅�௡ − 𝐸(�̅�௡)}{𝑦ത௡ − 𝐸(𝑦ത௡)}] 

     n nn n
v 2cov , (2)v y yx x     

L.H.S:    su
2

SRSWOR nN

nN
nV


  

 N 2

i 1

N n 1
i NnN N 1 U U







  

   
   

2N

i 1

2N

i 1

N n 1
i i N NnN N 1

N n 1
i iN NnN N 1

X Y X Y

X YX Y















    

    

        
N N N2 2

i iN N
i 1 i 1 i 1

1 N n
V 2i iN Nn N 1 nN X Y X Yu X Y X Y

  

 
       

   

      
2N N N2

i iN N
i 1 i 1 i 1

N n 1 1 1
2i iN NnN N 1 N 1 N 1X Y X YX Y X Y

  

 
        

   

  


















 



N

1i
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Y

2

X 1N
2

nN

nN YYXX
ss  
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nN

nN

1N
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NiNi

2

Y

2
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
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                          From (2) & (3) 
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    
N

i iN Nn n i 1

2 N n
2 cov ,

N 1 nNy X YX Yx


 
   

   

    








N

1i
NiNinn YYXXy 1N

1

nN

nN
,cov x

 
 

1.2   DESCRIPTION OF SYSTEMATIC SAMPLING: 
 

 A Sampling Technique in which only the first unit is selected with the help of random 

numbers and the rest get selected automatically according to some pre-designed pattern is 

known as “Systematic Random Sampling”. 

Suppose N units of the population are numbered from 1 to N in some order.                    

Let N= nk, where ‘n’ is the sample size and ‘k’ is an integer and a random number less than 

or equal to ‘k’ be selected and every kth unit thereafter. 

 For instance, if k=15 and if the first unit drawn is no.10, the subsequent units are no’s 

10,25,40,55,70 and so on. This type is called as every kth Systematic Sampling and such a 

procedure termed “Linear Systematic Sampling”. If N≠nk, and every 𝑘௧௛ unit be included in 

a circular manner till the whole list is exhausted. It will be called “Circular Systematic 

Sampling”. 

 
1.3  ADVANTAGES OVER SIMPLE RANDOM SAMPLING: 

 
(A) 

1 .It is easier to draw a sample and often easier to execute without mistake. 
2. This is a particular advantage when the drawing is done in an office then maybe a 

substantial saving in time. 
3. For instance, if the units are described on cards that are all of the same size and lie in a 

file drawer, a card can be drawn out every inch along file as measured by ruler (scale). 
4. This operation is speedy where as SRSING would be slow. 

(B) 
1. Institutively Systematic sampling sums likely to be more precise than SRSING. 
2. In effect if stratified the population into n-strata with consists of the first k-units, and 

second k-units and so on. 
3. We might therefore expect the SYSING to be about as precise as the corresponding 

Stratified Random Sampling with one unit per stratum. 
4. The difference is that with the SYS the units occur at the same relative position, in the 

stratum where as with the stratified random sample the position in the stratum  is 
determined separately by randomization within the each stratum. 

  [The position is differ from stratum to stratum in stratified random sampling]. N= n k 
1111  111   11111  -  -  -  -  -  -  -  -  -   -  1 

k k k k 
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(C) 
         1. Systematic Sampling useful in forest surveys for estimating the volume of Timber. 

     2.  In fisheries for estimating the total catch of fish. 
     3. In milk yield surveys for estimating of the location yield. (We use Systematic Sampling    
         in agriculture field ) 
 

Notations: Let𝑦௜௝denote the 𝑗௧௛ number of the 𝑖௧௛ systematic sample, so that   
 

         j=1,…..n; i=1,…k 
             The mean of the 𝑖௧௛  sample is denoted by:-𝑦ത௜ = ∑ 𝑦௜௝

௡
௝ୀଵ /𝑛 

 
              The mean of a systematic sample is     𝑦ത௦௬ = ∑ 𝑦ത௜

௞
௜ୀଵ /𝑘 

 
              Is an unbiased estimator of the population mean  𝑌ത. 

 
1.4  VARIANCE OF SYSTEMATIC SAMPLING: 
 
THEOREM : 
 
  The variance of the mean of a systematic sample is  : 
 

 
 
where 
 

                                                               (1) 
 
Is the variance among units that lie within the same systematic sample  

 
PROOF:- 
 
By usual identity of ANOVA 
 

                                          (2) 
 
The cross product term is ‘zero’ since  
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Within each sample. The variance of  by definition 
 

                                                                           (3) 
 

K* =   from equation (1) 
 

Hence, (N-1)𝑆ଶ=nk* +k(n-1)*𝑆௪௦௬
ଶ  

 

nk* =(N-1)𝑆ଶ -k(n-1)*𝑆௪௦௬
ଶ  

 
divide with nk on both sides  

 
 

1.5   SUMMARY:  
 
Systematic sampling is a practical and efficient method for selecting samples from large, 
ordered populations. While it offers numerous advantages over simple random sampling, 
such as simplicity and improved coverage, care must be taken to ensure that the population’s 
ordering does not introduce bias. When properly applied, systematic sampling can yield 
highly reliable and representative results with reduced variance. 
 

1.6   KEY WORDS:  
 
 Sampling 

 Systematic Sampling 

 Random Start 

 Sampling Interval (k) 

 Simple Random Sampling 

 Variance 

 Bias 

 Efficiency 

 

1.7  SELF ASSESSMENT QUESTIONS:  
 

1. What is the key difference between systematic sampling and simple random sampling? 
2. How is the sampling interval (k) determined in systematic sampling? 
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3.  List two advantages of systematic sampling over simple random sampling. 
4.  In what situations might systematic sampling yield a higher variance than simple random 

sampling? 
5.  Explain with an example how a hidden pattern in data could affect systematic sampling 

results. 
6. Derive the formula for the variance of the sample mean in systematic sampling. 
7. If a population has 500 elements and a sample of 50 is needed, what is the sampling 

interval? Illustrate how you would select the sample. 
8. Why is systematic sampling considered more practical in field surveys? 

 
1.8  SUGGESTED READINGS: 
 

1. Cochran, W.G. (1977). Sampling Techniques. 3rd ed. Wiley. 
2. Kish, L. (1965). Survey Sampling. Wiley. 
3. Lohr, S.L. (2010). Sampling: Design and Analysis. 2nd ed. Brooks/Cole. 
4. Sukhatme, P.V. et al. (1984). Sampling Theory of Surveys with Applications. Iowa State 

University Press. 
5. Levy, P.S., & Lemeshow, S. (2013). Sampling of Populations: Methods and Applications 

(4th ed.). Wiley. 
 

 
     Prof. G. V. S. R. Anjaneyulu 

      
 
 
 
 
 
 
 
 
 
 



LESSON- 2 

STRATIFIED RANDOM SAMPLING 
      
OBJECTIVES: 
 
     By the end of this lesson, learners will be able to: 

 Understand the concept of stratified random sampling, including its purpose and 
advantages over simple random sampling. 

 Illustrate stratified sampling through practical examples to comprehend its application 
in real-world scenarios. 

 Familiarize with key notations and terminology used in stratified sampling 
methodology. 

 Explain the step-by-step procedure involved in conducting stratified random sampling. 
 Differentiate between stratified sampling and cluster sampling schemes, highlighting 

their respective use cases. 
 Identify potential issues in the estimation of parameters when using stratified 

sampling. 
 Calculate the population mean and its variance using appropriate estimation techniques 

in the context of stratified sampling. 
 

STRUCTURE: 

 

2.1 Introduction 

2.2 Example 

2.3 Notations 

2.4 Procedure of Stratified Random Sampling 

2.5 Difference Between Stratified And Cluster Sampling  Schemes 

2.6 Issues in the Estimation of parameters in Stratified sampling 

2.7 Estimation of Population mean and its variance 

2.8 Summary 

2.9 Key words 

2.10  Self -Assessment Questions 

2.11  Suggested Readings 

 

2.1 INTRODUCTION: 
 

An important objective in any estimation problem is to obtain an estimator of a population 

parameter that can take care of the salient features of the population. If the population is 
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homogeneous with respect to the characteristic under study, then the method of simple 

random sampling will yield a homogeneous sample, and in turn, the sample mean will serve 

as a good estimator of the population mean. Thus, if the population is homogeneous with 

respect to the characteristic under study, then the sample drawn through simple random 

sampling is expected to provide a representative sample. Moreover, the variance of the 

sample mean not only depends on the sample size and sampling fraction but also on the 

population variance. To increase the precision of an estimator, we need to use a sampling 

scheme that can reduce the heterogeneity in the population. If the population is 

heterogeneous with respect to the characteristic under study, then one such sampling 

procedure is stratified sampling.  
 

The basic idea behind stratified sampling is to  

• Divide the whole heterogeneous population into smaller groups or subpopulations 

such that the sampling units are homogeneous with respect to the characteristic under 

study within the subpopulation and  

• Heterogeneous with respect to the characteristic under study between/among the 

subpopulations. Such subpopulations are termed as strata.  

• Treat each subpopulation as a separate population and draw a sample by SRS from 

each stratum. 

[Note: ‘Stratum’ is singular, and ‘strata’ is plural].  
 
2.2 EXAMPLE: 
 

In order to find the average height of the students in a school of class 1 to class 12, the 

height varies a lot as the students in class 1 are of age around 6 years, and students in class 10 

are of age around 16 years. So, one can divide all the students into different subpopulations or 

strata, such as 

Students of classes 1, 2, and 3: Stratum 1 

Students of classes 4, 5, and 6: Stratum 2 

Students of classes 7, 8, and 9: Stratum 3 

Students of classes 10, 11, and 12: Stratum 4 

Now draw the samples by SRS from each of the strata 1, 2, 3 and 4. 

All the drawn samples combined together will constitute the final stratified sample for further 

analysis. 
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2.3 NOTATIONS:  
 

We use the following symbols and notations: 

N : Population size  

k :  Number of strata 

iN : Number of sampling units in ith strata 

 
1

k

i
i

N N


  

:in Number of sampling units to be drawn from ith stratum 

1

:
k

i
i

n n


 Total sample size 

 
2.4  PROCEDURE OF STRATIFIED SAMPLING:  

 

Divide the population of N  units into k  strata. Let the ith stratum has , 1,2,....,iN i k  

number of units.  

 Strata are constructed such that they are non-overlapping and homogeneous with respect to 

    the characteristic under study such that 
1

k

i
i

N N



 

 Draw a sample of size in from  ith (1,2,...., )k  stratum using SRS (preferably WOR) independently 

      from each stratum. 
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 All the sampling units drawn from each stratum will constitute a stratified sample of size 
1

k

i
i

n n


  

2.5  DIFFERENCE BETWEEN STRATIFIED AND CLUSTER SAMPLING 
             SCHEMES: 

 
 In stratified sampling, the strata are constructed such that they are  

 within homogeneous and 

  among heterogeneous.  

In cluster sampling, the clusters are constructed such that they are  

 within heterogeneous and  

 among homogeneous. 

[Note: We discuss the cluster sampling later.] 

 

2.6  ISSUES IN THE ESTIMATION OF PARAMETERS IN STRATIFIED    
       SAMPLING: 

      

Divide the population of N  units into k  strata. Let the ith stratum has , 1,2,....,iN i k  

number of units. 

Note that there are k  independent samples drawn through SRS of sizes 1 2, ,....., kn n n  from 

each of the strata. So, one can have k estimators of a parameter based on the sizes 

1 2, ,....., kn n n respectively. Our interest is not to have k  different estimators of the parameters, 

but the ultimate goal is to have a single estimator. In this case, an important issue is how to 

combine the different sample information together into one estimator, which is good enough 

to provide information about the parameter. 

We now consider the estimation of population mean and population variance from a stratified 

sample. 

 

2.7 ESTIMATION OF POPULATION MEAN AND ITS VARIANCE:  
 

Let 

:Y Characteristic under study, 

:iy Value of jth unit in the ith stratum 1,2,....., ,  i = 1,2,.....,k,j n  

1

1
:

iN

i ij
ji

Y y
N 

  Population mean of ith stratum 
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1

1
:

in

i ij
ji

y y
n 

   Sample mean of ith stratum 

1 1

1
:

k k

i i i i
i i

Y N Y wY
N  

    Population mean where i
i

N
w

N
  

Estimation of Population Mean:  

First, we discuss the estimation of the population mean. Note that the population mean is 

defined as the weighted arithmetic mean of stratum means in the case of stratified sampling, 

where the weights are provided in terms of strata sizes.  

Based on the expression
1

1 k

i i
i

Y N Y
N 

  , one may choose the sample mean 

1

1 k

i i
i

y n y
n 

   

as a possible estimator of Y.  

Since the sample in each stratum is drawn by SRS, so 

  ,iE y Y  

Thus 

   
1

1

1

1
        

         

k

i i
i

k

i i
i

E y n E y
n

nY
n

Y













  

and y  turns out to be a biased estimator of Y . Based on this, one can modify y  so as to obtain an 
unbiased estimator of Y . Consider the stratum mean, which is defined as the weighted arithmetic 
mean of strata sample means with strata sizes as weights given by 
 

1

1
.

k

st i i
i

Y N y
N 

   

Now 

   
1

1

1

1
         

        .

k

st i i
i

k

i i
i

E Y N E y
N

N Y
N

Y













  

Thus sty is an unbiased estimator of Y . 
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Variance of sty : 

   
 

 2

1 1 1

, .
ink k

st i i i j i j
i i j j

Var y w Var y w w Cov y y
   

     

Since all the samples have been drawn independently from each of the strata by SRSWOR so 

 
  2

, 0,i j

i i
i i

i i

Cov y y i j

N n
Var y S

N n

 




 

Where 

 
2

2

1

1

1

iN

i ij i
Ji

S Y Y
N 

 
   

Thus, 

  2 2

1

2
2

1

            1

k
i i

st i i
i i i

k
i i

i
i i i

N n
Var y w S

N n

n S
w

N n








 
  

 




 

Observe that  stVar y  is small when 2
iS  is small. This observation suggests how to construct the 

strata. If 2
iS  is small for all 1,2,......, ,i k  then  stVar y will also be small. 

The total variation in the population is fixed and can be orthogonally partitioned into between and 

within strata variations, i.e., 

Total variation = Between strata variation + Within strata variation  2
iS  

Since 2
iS  is small, so obviously “Between strata variation” has to be large. That is why it was 

mentioned earlier that the strata are to be constructed such that they are within homogeneous, 

i.e., 2
iS  is small and among heterogeneous (“Between strata variation” is large).  

For example, the units in geographical proximity will tend to be more closer. The 

consumption patterns in the households will be similar within a lower-income group housing 

society and within a higher-income group housing society, whereas they will differ a lot 

between the two housing societies based on income. 

Estimate of Variance:  

Since the samples have been drawn by SRSWOR, so 

 2 2
i iE s S  
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Where   2
2

1

1

1

in

i
ji

s ijn
y y






  

 

   

2

2

1

2 2

1

 

 

                  .

i i
i i

i i

k

st i i
i

k
i i

i i
i i i

N n
and Var y s

N n

so Var y w Var y

N n
w s

N n










 
  

 





 

Note: If SRSWR is used instead of SRSWOR for drawing the samples from each stratum, then in this 
case 

 
1

k

st i i
i

st

y w y

E y Y







 

 
2

2 2 2

1 1

k k
i i i

st i i i
i ii i i

N n
Var y w s w

N n n


 

 
  

 
   

 

 

2 2

1

2
2

1

1
 .

i

k
i i

st
i i

N

i
ji

w s
Var y

n

where ijn
y y












 

  

Advantages of stratified sampling: 

1. Data of known precision may be required for certain parts of the population. This can 

be accomplished with a more careful investigation of a few strata. 

Example: To know the direct impact of the hike in petrol prices, the population can be 

divided into strata, such as lower income group, middle-income group, and higher income 

group. Obviously, the higher-income group is more affected than the lower-income group. 

So, a more careful investigation can be conducted in the higher-income group strata. 

2. Sampling problems may differ in different parts of the population. 

Example: To study the consumption pattern of households, the people living in houses, 

hotels, hospitals, prisons, etc., are to be treated differently. 

3. Administrative convenience can be exercised in stratified sampling. 

Example: In taking a sample of villages from a big state, it is more administratively 

convenient to consider the districts as strata so that the administrative set up at the district 
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level may be used for this purpose. Such administrative convenience and the convenience of 

organizing fieldwork are important aspects of national-level surveys. 

4. Full cross-section of the population can be obtained through stratified sampling. It may 

be possible in SRS that some large part of the population may remain unrepresented. 

Stratified sampling enables one to draw a sample representing different population segments 

to any desired extent. The desired degree of representation of some specified parts of the 

population is also possible. 

5. Substantial gain in efficiency is achieved if the strata are formed intelligently. 

6. In the case of a skewed population, the use of stratification is of importance since a 

larger weight may have to be given for the few extremely large units, which in turn reduces 

the sampling variability. 

7. When estimates are required for the population and the subpopulations, then stratified 

sampling is helpful. 

8. When the sampling frame for subpopulations is more easily available than the sampling 

frame for the whole population, then stratified sampling is helpful. 

9. If the population is large, it is convenient to sample separately from the strata rather 

than the entire population. 

10. The population mean or population total can be estimated with higher precision by 

suitably providing the weights to the estimates obtained from each stratum. 

 

2.8  SUMMARY:  

 

 Stratification is the process of grouping heterogeneous members of the population into 

relatively homogeneous subgroups. 

 The allocation of sample sizes in different strata can be done either by proportional 

allocation.  

 The allocation of sample sizes in different strata is said to be proportional if the sampling 

fraction fi is constant for all strata.  

 The allocation of sample sizes in different strata is said to be optimal if it holds any one of 

the characteristics (i)  stV y is minimum for a specified size n. (ii)  stV y is minimum for 

s specified cost C and (iii) Cost C is minimum for a specified  stV y .  

 If intelligently used, stratification always results in a smaller variance for the estimated 

mean or total than is given by a comparable simple random sampling. 
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 Stratified random sampling with proportional allocation gives a more precise estimate of 

the population mean as compared with that of simple random sampling. We observe that  

grater the difference between stratum means, greater would be the gain in precision in 

Stratified random sampling with proportional allocation over simple random sampling. 

 Stratified random sampling with proportional allocation gives a more precise estimate of 

the population mean as compared with that of simple random sampling. We observe that 

grater the difference between stratum standard deviations, would be the gain in precision 

of optimum allocation over simple random sampling. 

 Stratified random sampling is an effective method to obtain accurate and representative 

estimates from a population by dividing it into meaningful strata. It ensures better 

precision than simple or cluster sampling, especially when strata differ significantly. 

However, its success depends on proper stratification, appropriate allocation of sample 

sizes, and careful handling of practical challenges. When implemented correctly, it offers 

high-quality statistical estimates with minimized sampling error. 

 

2.9  KEY WORDS: 

 

 Stratified Sampling 

 Stratum 

 Sample Allocation 

 Population Mean 

 Sampling Variance 

 Homogeneous Groups 

 Estimation 

 Sampling Scheme 

 

2.10 SELF ASSESSMENT QUESTIONS: 

 

1. What is the key advantage of stratified sampling over simple random sampling? 
2. Define stratum and give an example. 
3. How is the sample mean estimated in stratified sampling? 
4. What are two major allocation strategies used in stratified sampling? 
5. Explain one disadvantage of stratified sampling. 
6. Differentiate between stratified and cluster sampling with an example. 
7. How do overlapping strata affect the quality of stratified sampling? 
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8. Given 1 2 1 2 1 21000,  N 400,  N 600,  n 40,  n 60,  and =50, =70 calculate .stN y y y      

9. Why is proportional allocation commonly used? 
10. What assumptions are made while estimating variance in stratified sampling? 
 
2.11  SUGGESTED READINGS: 

 

1. Cochran, W.G. (1977). Sampling Techniques. 3rd ed. Wiley. 
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LESSON-3 

SAMPLING PROPORTIONS & ESTIMATION OF 
SAMPLE SIZE 

 

OBJECTIVES:  
 

     By the end of this lesson, learners will be able to: 
 Understand the Concept of Stratified Sampling for Proportions Learn how stratification is 

applied in estimating population proportions and why it improves accuracy over simple 
random sampling (SRS). 

 Evaluate the Gain in Precision Quantify the increase in precision due to stratification and 
understand conditions under which stratification offers maximum benefit. 

 Solve Allocation Problems Analyze how to allocate samples optimally across strata under 
different constraints such as cost and population variability. 

 Determine Sample Sizes Across Strata Decide on the number of samples to be drawn 
from each stratum based on proportional, equal, or optimal allocation principles. 

 Compare Variances under Various Allocation Methods Study the behaviour of variances 
under proportional, optimal, and other allocation strategies. 

 Compare Stratified Sampling with SRS Examine how stratified sampling improves 
estimation accuracy over SRS by comparing variances under different scenarios. 

 Apply Stratified Sampling Techniques in Practical Surveys Integrate all above concepts 
to design efficient and statistically sound survey strategies using stratified random 
sampling. 

STRUCTURE: 

 

3.1 Introduction 

3.2 Stratified Sampling for Proportions 

3.3 Estimation of the gain in precision due to stratification 

3.4 Allocation problem 

3.5 Choice of sample sizes based on different stratas 

3.6 Variances under different allocations 

3.7 Comparison of variances of the sample mean under SRS with stratified mean 
under proportional and optimal allocation 
 

3.8  Summary 

3.9  Key words 

3.10  Self -Assessment Questions 

3.11  Suggested Readings 
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3.1 INTRODUCTION:  
 
Stratified sampling is a powerful and widely used technique in survey sampling that enhances 

the precision of estimates by dividing the population into distinct subgroups, or strata, and 

then sampling from each stratum. This method is especially beneficial when the population 

exhibits considerable heterogeneity, but within each stratum there is more homogeneity. 

In the context of estimating proportions, stratified sampling ensures that each subgroup is 

appropriately represented, which can lead to more reliable and precise estimates than simple 

random sampling (SRS), especially when the proportions vary significantly across strata. 

This unit explores the application of stratified sampling to proportions, with particular 

attention to the estimation of gains in precision, allocation of sample sizes, and the 

comparison of variances under different allocation strategies. We will also examine the 

optimal and proportional allocation methods and their impact on the efficiency of the 

sampling design. 

3.2  STRATIFIED SAMPLING FOR PROPORTIONS: 
 

If we wish to estimate the proportion of units in the population that fall into some defined 

classC , the ideal stratification is attained if we can place in the first stratum every unit that 

falls in C  ,and in the 2nd stratum every unit that does not fall in C . 

       Let h h
h h

hh

,AP N n
ap  be the proportions of units in C , in the hth stratum and in the 

sample from that stratum respectively. For the proportion in the whole population, the 

estimate appropriate to stratified random sampling is  

                          
h h

st
h N

N p
p   

    
N

yN
ywy hh

h hhst


     

   y
h  

sample mean from ℎ௧௛ stratum 

  
h

p = sample proportion from ℎ௧௛ stratum. 

Theorem:  With stratified random sampling, the variance of 
st

p is  

                2

hhh h h
2st

h hh

1
V

1

QPN N n
N nN

p


 
   , PQ hh

1  
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Proof: we have   )1(
1

V
n
SnNN

N
y

h

2

h

h
hhh2st






   

Let y
hi

be a variate which has the value ‘1’ when the unit is in C , and zero otherwise. 

 For this variate , QPN
NS hh

h

h2

h 1
 . 

 Substitute this value of  in equation (1),we get    
 

               V(𝑝௦௧) =
ଵ

ேమ
∑

ே೓(ே೓ି௡೓)

௡೓
௛ .

ே೓

ே೓ିଵ
𝑃௛𝑄௛ 

                      2

hhh h h
2st

h hh

1
V

1

QPN N n
N nN

p


  
 ------(2) 

Note: In nearly all applications, even if the FPC is not ignored ,terms in
Nh

1
 will be 

negligible, and the slightly simpler formula, 

           V(𝑝௦௧) =  
ଵ

ேమ
∑ 𝑁௛(ே೓ି௡೓)௛ .

௉೓ொ೓

௡೓
.

ே೓

ே೓ିଵ
 

                Dividing both Numerator and Denominator by  

              V(𝑝௦௧ ) =
ଵ

ேమ
∑

ே೓(ே೓ି௡೓)

௡೓
 . 𝑃௛𝑄௛.

ଵ

ଵି
భ

ಿ೓

௛              

                                 = 
ଵ

ேమ
∑ 𝑁௛(𝑁௛ − 𝑛௛).

௉೓ொ೓

௡೓
௛ . 

                  2 hhh h
2 hst

h hh

1
V

QPN nN N nN
p


   

                   2 h h
hhst

h h

V 1 (3)
QP

w fn
p     

Corollary-1:If  FPC is ignored i.e., 1011 f h
  

                      hh

st
h h

2
hV

QPw
n

p   

Corollary-2: With proportional allocation 

               2 h h
hst

h h

V 1 f
QP

w n
p     

Nn
NQPw

h

h

h
hhh

f1     











N
NW h

h
  

                              





 


n

f1

h
hhh QPw         














N
Nn

h

hn  

                 hh hst
h

1 f
V

n
Qw Pp 

  
 

 
 
 
 

S
2

h

Nh
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3.3  ESTIMATION OF GAIN IN PRECISION DUE TO  STRATIFICATION: 
 
 In comparing the precision (variance) of stratified with unstratified random sampling, it was 

assumed that the values of stratum means  Yh
 and stratum variance  S

2

h
 were known. Many 

times stratum means and stratum variances are unknown, What is available only a stratified 

sample and the problem is to estimate the gain in precision due to stratification. 

        An estimate of the variance of the estimate from Simple Random Sampling is obtained 

from stratified sample and a comparison can be made with a situation in which no 

stratification can be made. 

      The true variance of the mean of a SRS is    
 







 







 
 

n

f1

1N

N

hi

nN

nN
yV

L

1h 1i

2

2

h

Yy
s        

              
    

2

h hhi
Y

(1 f)

n N 1

y Y Y
hNL

h i

  






 

               

























  

1N

Y2
hhhi

n

f1
yV h i

hhhi
h i

2

h i

2

YYyYYYy
      

The cross product term vanishes since   0
i

hhi Yy  in all strata 

     
   2

2

h h h
h h

1
h1 f

V y (1)
n (N 1)

YN S N Y
 

     
 
 
 

 
 

 
1

hhi

N
Yy

S
h

h

2

2

h 

 

  

 In the first term   









h

2

hh SN 1  of the equation(1), we need only put s
2

h
forS

2

h
 

 The second term   2

h
h

h YN Y
 
 
  

  requires investigation because 

  2

h
h h sty yN  is not an unbiased estimate of   2

h
h

h YN Y   

 [The relevant result for   
h

2

h YYN h
 is stated in theorem-5A.1]  

Theorem-5A.1: in stratified random sampling   

   
 2

2 hh h
h h

h h
h h h

2
E 1hh st N

S N n NYy yN N Y n

   
     

    


  
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                       Wfn
SNYYN hh

h h

2

hh

h

2

h
11

h
    

Proof: we may write  

       
22

h h h hhh h

Y
h st st

Yy y y yN N Y Y
 

     
 

  
 

=∑ 𝑁௛[(𝑌ത௛ − 𝑌ത)ଶ + (𝑦ത௛ − 𝑌ത௛)ଶ + (𝑦ത௦௧ − 𝑌ത)ଶ + 2(𝑌ത௛ − 𝑌ത)(𝑦ത௦௧ − 𝑌ത) − 2(𝑌ത௛ − 𝑌ത)(𝑦ത௦௧ −௛

𝑌ത) − 2(𝑦ത௛ − 𝑌ത௛)(𝑦ത௦௧ − 𝑌ത)] 

              We now expand and take the average overall possible samples. It may be verified 

that the average of each of two cross product terms involving  YYh
  vanishes (becomes 

zero)i.e.,   0YYh
   .                                                                                                                                         

This gives

          
2 22 2

h h h h h hh sth h h h h

2 Y
h hh st h st

Y Yy y y yy yN N N N N YY Y                     

Taking expectation on both sides 

          
2 22 2

h h h h h hh sth h h h h

E E E 2E Y
h hh st h st

Y Yy y y yy yN N N N N YY Y
     

          
        

       

but     



















   YyyYyN st

NE2YE2
2

h sthhh
   [from the-5.2] 

     2E[∑ 𝑁௛(𝑦ത௦௧ − 𝑌ത)ଶ
௛ ] − 2𝐸[∑ 𝑁௛(𝑦ത௛ − 𝑌ത௛)(𝑦ത௦௧ − 𝑌ത)௛ ]                 

                 =∑ 𝑁௛𝐸(𝑦ത௦௧ − 𝑌ത)ଶ
௛ − 2𝐸(𝑦ത௦௧ − 𝑌ത)ଶ 

                   










 yy

stst
NV2NV  





 y

st
NV  

                    
n
SnNN

N h

2

h

h
hhh2

1
N        [from the-5.3]  

                   
n
SnNN

h

2

h

h

hh
h N











 
  

      22 2
hh h

h h h
h h h hh

E E hh h
N n SNy yN N Y N nhY

   
    

   
     

 Because with in each stratum y
h
is the mean of SRS , Hence 

      22 2
2hh hh h

h h h h
h h h hh h

E
hh st N

N n N Sny yN N S NY n nY
   

     
   

                        
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 2
2 hh h

h h
h h h

1
h N

N NnN SY nY
   

       
   

                    
2

2
h h h h

h
h h h h

1 1
h N

N S NnN Y NnY
  

        
   

                       
2

2
h h

hh h
h h h

1 1h
N SN WfY nY      

Corollary: An unbiased estimator of  2

h
h hyN Y   is 

        ∑ 𝑁௛(𝑦ത௛ − 𝑦ത௦௧)ଶ
௛  - ∑

ே೓௦೓
మ

௡೓
௛ (1-𝑓௛)(1-𝑊௛)⟶(2) 

   Substituting equation (2) in (1) we obtained an unbiased estimator of  yV  i.e., 

   

222 2
22 hh h h h h

h h h hh h h h hh h

2N-n
y (3)h hn N-1 N

h

W W W y yW W Wn n
v

ss ss
 
        
  

       
 

      

In nearly all applications simplification can be utilized 

    (i) N>50 . The fourth term inside the bracket of equation (3) be ignored. 

   

222
22 hh h h

h h h hh h h hh h

2N-n
y (4)h hn N-1

h

SW W y yW W Wn n
v ss

 
       
  

      
 

   

If the sample allocation is large enough in each stratum, i.e., All 50n h
  . The second and 

third terms inside the bracket of equation (4) may be dropped  

   

2

22

h h h hh h

N-n
y (5)h hn N-1

h
y yW W Wv s

 
     
  

    
 

  

 Relative precision of method-1 to method-2 is 
2-methodin  estimate ofprecision 

1-methodin  estimate ofprecision 
  

Suppose, :V1
variance in method 1, :V2

variance in method 2 

1 2

1

2

1

R . P
1

V V
V

V

 
 
  
 
 
 

 

The estimate of the relative gain in precision due to stratification is thus obtained by   

୴(୷ഥ౩౎)ି୴(୷ഥ౩౪)

୴(୷ഥ౩౪)
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3.4 ALLOCATION PROBLEM: 
 

Question: How do you choose the sample sizes 1 2, ,......, kn n n  so that the available  

                 resources are used effectively?  

There are two aspects of choosing the sample sizes:  

(i) Minimize the cost of the survey for a specified precision.  

(ii) Maximize the precision for a given cost.  

Note: The sample size cannot be determined by minimizing both the cost and variability 

simultaneously. The cost function is directly proportional to the sample size, whereas 

variability is inversely proportional to the sample size.  

Based on different ideas, some allocation procedures are as follows:  

1. Equal allocation: 

Choose the sample size i n to be the same for all the strata.  

Draw samples of equal size from each stratum.  

Let n  be the sample size and k be the number of strata, then  

 i

n
n

k
 for all i = 1,2,….k. 

2. Proportional allocation: 

 For fixed k, select 1n  such that it is proportional to stratum size iN , i.e., 

  

 n  = C
i i

i i

n N

or N


 

Where C  is the constant of proportionality. 

1 1

n  = 

 n  CN

 C = .

k k

i i
i i

CN

or

n

N

 





 
 

Thus n .i i

n
N

N
   
 

 

Such allocation arises from considerations like operational convenience. 
 
3. Neyman or optimum allocation: 

 This allocation considers the size of strata as well as variability 

*

  

 = C

i i i

i i i

n N S

n N S


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Where *C  is the constant of proportionality. 

*

1 1

*

1

*

1

1

C
n  = 

 n  C

 C

 n

k k
i i

i
i i

k

i i
i

k

i i
i

i i i
i k

i i
i
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This allocation arises when the  stVar y  is minimized subject to the constraint 
1

k

i
i

n

  

(prespecified). There are some limitations to the optimum allocation. The knowledge 

of  1,2,.....,iS i k needed to know ni . If there are more than one characteristic, then 

they may lead to conflicting allocation. 

 

3.5 CHOICE OF SAMPLE SIZES BASED ON DIFFERENT STRATAS: 
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3.6  VARIANCES UNDER DIFFERENT ALLOCATIONS: 
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3.7 COMPARISON OF VARIANCES OF THE SAMPLE MEAN UNDER SRS WITH      
        STRATIFIED MEAN UNDER  PROPORTIONAL AND OPTIMAL ALLOCATION: 
 

 



Sampling Theory                                            3.13                Sampling Proportions & Esti…  
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3.8  SUMMARY AND CONCLUSIONS: 
 

In this unit, we explored the key concepts and applications of stratified sampling, 

an essential technique in survey sampling designed to improve precision by 

dividing the population into homogeneous subgroups (strata). 

 Introduction provided a foundation for understanding the motivation and rationale behind 

stratification—mainly to reduce sampling error and ensure representative sampling across 

key subgroups. 

 Stratified Sampling for Proportions, we examined how to estimate population proportions 

using stratified sampling, including formulas for weighted means and variance. 

 Estimation of the Gain in Precision highlighted the advantage of stratified sampling over 

simple random sampling (SRS), demonstrating how stratification can yield lower 

variances and more reliable estimates, especially when there is heterogeneity across 

strata. 

 The Allocation Problem addressed how to distribute the total sample size across different 

strata optimally. We reviewed proportional, equal, and Neyman (optimal) allocation 

methods, each with different criteria for balancing precision and cost. 

 hoice of Sample Sizes focused on determining sample sizes in each stratum, considering 

population size, variability, and resource constraints. 

 In Variances under Different Allocations, we compared how the allocation strategy 

influences the variance of estimators. Optimal allocation generally results in the smallest 

variance, followed by proportional and then equal allocation. 

 Finally, Comparison of Variances showed how stratified sampling, especially under 

optimal or proportional allocation, typically outperforms SRS in terms of efficiency and 

accuracy of the sample mean. 

CONCLUSION:  

Stratified sampling is a powerful and flexible technique, particularly effective when 

the population is heterogeneous. By thoughtfully dividing the population and choosing 

appropriate allocation strategies, researchers can significantly enhance the precision of their 

estimates. The choice of allocation method and sample size per stratum plays a crucial role in 

minimizing variance and ensuring cost-effective sampling. Overall, stratified sampling offers 

a methodological advantage in both theory and practical survey applications. 
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3.9 KEY WORDS: 
 

 Stratified Sampling 

 Stratum/Strata 

 Proportion Estimation 

 Precision Gain 

 Between-stratum Variance 

 Within-stratum Variance 

 Optimal Allocation 

 Proportional Allocation 

 Neyman Allocation 

 Sample Size Determination 

 Population Mean 

 Variance Estimation 

 Simple Random Sampling (SRS) 

 Cost-effective Sampling 

 Homogeneity within Strata 

 Heterogeneity between Strata 

 Sampling Efficiency 

 Allocation Problem 

 Sampling Design 

 Estimation Accuracy 
 

3.10 SELF ASSESSMENT QUESTIONS: 
 

1. What are the main advantages of stratified sampling over simple random sampling? 

2. How do you estimate a population proportion using stratified sampling? 

3. What is meant by "gain in precision" due to stratification? How is it quantified? 

4. Describe the Neyman allocation and how it differs from proportional allocation. 

5. How does the choice of sample sizes affect the precision of a stratified estimator? 

6. What are the variances under proportional and optimal allocation? 

7. When would stratified sampling provide significantly better estimates than SRS? 

8. In what situations would you prefer proportional allocation over Neyman allocation? 

9. What factors should be considered when deciding the allocation of sample sizes in 
different strata? 

10. Give an example where stratified sampling leads to a more precise result than SRS. 
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LESSON- 4 

METHODS OF POPULATION WITH 
LINEAR TREND 

 
OBJECTIVES: 
 
By the end of this lesson, learners will be able to: 
Understand Linear Trends in Populations: 
o Identify the presence and nature of linear trends in finite populations. 
Introduce Systematic Sampling Techniques: 
o Understand the limitations of simple systematic sampling when linear trends are present. 
Learn Yates End Correction: 
o Study Yates' approach to correct bias in systematic sampling under linear trend 

conditions. 
Explore Modified Systematic Sampling: 
o Learn the method of constructing modified systematic samples that reduce trend-induced 

bias. 
Understand Balanced Systematic Sampling: 
o Examine the concept of balancing sample selection to account for population trends. 
Study Centrally Located Sampling: 
o Understand the concept of sampling units near the center of each sampling interval. 
Understand Circular Systematic Sampling: 
o Learn how circular systematic sampling addresses edge effects and trend biases. 
Compare Sampling Methods: 
o Compare the efficiencies, variances, and biases of various sampling techniques in the 

presence of linear trends. 
Apply Techniques to Practical Situations: 
o Use real-world examples to demonstrate the effectiveness of each method. 

 
STRUCTURE: 
 

4.1    Introduction 

4.2    Yates end correction  

4.3    Modified systematic sampling 

4.4    Balanced systematic sampling 

4.5    Centrally located sampling 

4.6    Circular systematic sampling 

4.7    Summary 

4.8    Key words 

4.9    Self -Assessment Questions 

4.10  Suggested Readings 
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4.1  INTRODUCTION: 
 

In survey sampling, systematic sampling is a widely used technique due to its 
simplicity and practical applicability. However, its effectiveness significantly diminishes 
when the population exhibits a linear trend—that is, a consistent increase or decrease in the 
values across units ordered in a particular fashion (e.g., time, geography, or rank). 

In such cases, simple systematic sampling can introduce bias and lead to inefficient 
estimates. This has motivated the development of modified sampling strategies that 
specifically address the shortcomings of systematic sampling in the presence of trends. 

To mitigate the effect of linear trends and enhance the precision of estimates, several 
improved methods have been proposed: 

 Yates End Correction attempts to reduce bias by adjusting for the ends of the population. 
 Modified Systematic Sampling restructures the selection intervals to counteract trend 

effects. 
 Balanced Systematic Sampling ensures that samples are selected in a way that balances 

the trend influence. 
 Centrally Located Sampling focuses on choosing units near the center of each interval to 

minimize variability. 
 Circular Systematic Sampling addresses edge bias by wrapping the population around in a 

circular manner. 

These methods aim to retain the operational ease of systematic sampling while 
significantly improving accuracy and reliability when linear trends are present in the 
population. 

4.2  YATES END CORRECTION: 
 

If the linear trend is present in the population, LSS estimator for 𝒀ഥ can be improved 
by giving the weights: 

 
𝟏

𝐧
+

(𝟐𝐫 − 𝐤 − 𝟏)

𝟐(𝐧 − 𝟏)𝐤
𝐚𝐧𝐝

𝟏

𝐧
−

(𝟐𝐫 − 𝐤 − 𝟏)

𝟐(𝐧 − 𝟏)𝐤
 

 
To the first and the last units in the sample respectively instead of the usual weight of 
1/n. These weights have been determined such that when applied to the specular  
linear population considered. The estimator turns out to be 𝐘ഥ giving rise to zero 
variance. For, letting the weights for the first and last units to be 1

x
n

  
 

and 1
x

n
  
 

respectively we get the estimate for the rth systematic sample is  

𝒚ഥ𝒓 =
𝟏

𝒏
෍{𝒂 + 𝒃(𝒓 + 𝒋𝒉)

𝒏ି𝟏

𝒋ୀ𝟎

} + 𝒙(𝒂 + 𝒃𝒓) − 𝒙[𝒂 + 𝒃(𝒓 + (𝒏 − 𝟏)𝒌)] 

                      = a+b (r+
𝒏ି𝟏

𝒏𝟐
𝒌)-xb(n-1)k 
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 Equating this to the population mean a+b (N+1) and solving the x, we get  
 

X=
𝟐𝒓ି𝒌ି𝟏

𝟐(𝒏ି𝟏)𝒌
 

  
These corrections to the estimator based on the systematic sample drawn from a population 
exhibiting a linear trend in the population values are called End corrections, invented by 
Yates in 1948. It may be pointed out that these end corrections may make the estimator 
slightly biased through the variance is likely to be reduced. 
 
4.3  MODIFIED SYSTEMATIC SAMPLING: 
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Sampling Theory                                            4.5                          Methods of Population…  



Centre for Distance Education                  4.6                      Acharya Nagarjuna University 
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4.4  BALANCED  SYSTEMATIC  SAMPLING: 
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4.5  CENTRALLY LOCATED SAMPLING: 
 

Another situation where the estimator in the case of the hypothetical linear population 

equals. 𝑌ഥ  is obtained by considering only the systematic sample with the start 
(௞ାଵ)

ଶ
 if k is 

add or the two systematic samples with starts 
௞

ଶ
 and 

(௞ାଵ)

ଶ
 if k is even for, if k is add, 

substituting r=
(௞ାଵ)

ଶ
 in 𝑦ത௥, we get 

𝑦ത௥ = 𝑎 + 𝑏(
(𝑘 + 1)

2
,
(𝑛 − 1)

2
𝑘) 

                            =a+b .
(ேାଵ)

ଶ
 

 

 And if k is even substituting 
௞

ଶ
 and 

(௞ାଶ)

ଶ
 for r, we get 

                𝑦തೖ

మ

 = a + 
ଵ

ଶ
 𝑏𝑁  and  𝑦ത(ೖశభ)

మ

=a+ 
ଵ

ଶ
 b (N+2) 

 

The mean of which is 𝑌ത. Hence, it may be desirable to consider only the systematic 

sample with 
(௞ାଵ)

ଶ
 as the random start if k is odd and the systematic samples with 

௞

ଶ
(𝑜𝑟) 

(௞ାଵ)

ଶ
 as random starts for selection with probability 

ଵ

ଶ
 if k is even, when even 

there is a linear trend. Present in the population such a sample is known Centrally located 
sample. 

  
 But in practice, it is not advisable to use such a sample, especially when one is in doubt 

about the presence of present linear trend in the arrangement used, since it is not a valid 
sample due to certain units not getting any chance at all of being included in the sample 
and hence it is subject to bias and it is not possible to estimate the error involved in the 
estimator. 
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4.6  CIRCULAR SYSTEMATIC SAMPLING: 
 

This is when a sample starts again at the same point after ending. This means that once 
the sampling interval reaches the last member of the population, it wraps around to the 
beginning and continues the selection process. Circular systematic sampling is often used 
in situations where the population exhibits cyclical patterns or where there is no clear 
starting or ending point. For example, if researchers are studying tree growth in a forest, 
they could use circular systematic sampling by selecting trees at regular intervals along a 
circular path, ensuring comprehensive coverage of the forest area. 

Circular systematic sampling is like regular systematic sampling. However, rather 
than stopping at the end of the population list, you start over and continue sampling using 
your numerical interval until you’ve sampled every individual in the population. 
Researchers use this approach in cases where k isn’t an integer. 
 
Example 1: We have a population of 14 individuals numbered from 1 to 14. We want to   

 select a sample of 4 individuals using circular systematic sampling. 
1. Calculate the sampling interval: k = 14/4 = 3 (choose the closest integer to N/n) 
2. Start randomly between 1 to 14: Let's say we randomly start at individual number 4. 
3. Create samples by skipping through k units: We select individuals 4, 7, and 11. 
4. Repeat until you select members of the entire population: Since we have only two 

individuals in our sample, the process ends here. However, we would continue until 
all 14 individuals are sampled, resulting in 14 samples, if we wanted to sample the 
entire population 
 

In circular systematic sampling, a sample starts again from the same point once again after 
ending; thus, the name.  
For example, if N = 7 and n = 2, k=3.5. There are two probable ways to form sample: 

 

        
1. If we consider k=3, the samples will be – ad, be, ca, db and ec. 
2. If we consider k=4, the samples will be – ae, ba, cb, dc and ed. 

How is a circular systematic sample selected? 
 Calculate sampling interval (k) = N/n. (If N = 11 and n = 2, then k is taken as 5 and 

not 6) 
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 Start randomly between 1 to N 
 Create samples by skipping through k units every time until you select members of 

the entire population. 
 In the case of this method, there will be N number of samples, unlike k samples in the 

linear systematic sampling method. 
 
Difference between linear systematic sampling and circular systematic sampling: 
Here is the difference between linear and circular. 
 

Linear Circular 

Create samples = k (sampling interval) Create samples = N (total population) 

The start and endpoints of this sample are 
distinct. 

It restarts from the start point once the entire 
population is considered. 

All sample units should be arranged in a 
linear manner prior to selection. 

Elements will be arranged in a circular 
manner. 

 

4.7  SUMMARY AND CONCLUSION: 
 

In populations exhibiting a linear trend, conventional systematic sampling methods can 
lead to biased estimates and inefficient results, as the sample may not adequately reflect the 
trend in the data. To address these challenges, several refined sampling techniques have been 
developed. 

 
 Yates End Correction modifies the estimation procedure to account for bias at the 

beginning and end of the population sequence. 
 Modified Systematic Sampling alters the sample selection pattern to minimize the 

correlation between units introduced by the trend. 
 Balanced Systematic Sampling ensures that units are selected in a way that balances the 

rising and falling values across the trend, reducing variance. 
 Centrally Located Sampling selects units near the center of each interval, minimizing 

the potential bias caused by edge values within intervals. 
 Circular Systematic Sampling removes boundary effects by treating the population as 

circular, thus equalizing the chance of selection for all units. 
 
These advanced methods retain the simplicity and practicality of systematic sampling 

while significantly improving the efficiency and accuracy of estimates when the population 
is not homogeneous but follows a linear trend. 
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CONCLUSION: 
 

Understanding and choosing appropriate sampling strategies is crucial when dealing 
with populations with linear trends. The use of modified techniques such as Yates End 
Correction or Balanced Systematic Sampling helps to reduce bias and improve precision, 
ensuring more reliable and valid statistical inferences. Researchers and practitioners should 
be equipped to recognize trend patterns in data and apply these alternative methods to 
enhance the quality of survey results. 
 
4.8  KEY WORDS: 

 

 Linear Trend 

 Systematic Sampling 

 Yates End Correction 

 Modified Systematic Sampling 

 Balanced Systematic Sampling 

 Centrally Located Sampling 

 Circular Systematic Sampling 

 Trend-Induced Bias 

 Sampling Interval 

 Population Ordering 

 Sampling Efficiency 

 Sampling Variance 

 Edge Effect 

 Sampling Design 

 Unbiased Estimation 
 

4.9  SELF- ASSESSMENT QUESTIONS:  
 

1. What is a linear trend in the context of a population? Why does it pose a problem in 
systematic sampling? 

2. Explain the concept of Yates End Correction. How does it help in reducing bias? 
3. How does Modified Systematic Sampling differ from ordinary systematic sampling? 
4. What is the main idea behind Balanced Systematic Sampling? In what situations is it 

most effective? 
5. Describe Centrally Located Sampling. Why is it useful in the presence of a trend? 
6. What is the key advantage of using Circular Systematic Sampling over linear systematic 

sampling? 
7. When should one prefer circular systematic sampling over centrally located sampling? 
8. How does population ordering affect the efficiency of systematic sampling techniques? 
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LESSON - 5 

CLUSTER SAMPLING 

OBJECTIVES: 

 

By the end of this module, learners will be able to: 

 Understand the fundamentals of cluster sampling, including when and why it is used as an 
alternative to simple or stratified random sampling. 

 Differentiate between equal and unequal cluster sizes, and comprehend their implications 
on sampling design and estimation. 

 Describe and apply methods of selecting clusters with equal probability (SRS of clusters) 
and with varying probabilities (Probability Proportional to Size – PPS). 

 Calculate unbiased estimators of population totals and means using cluster sampling with 
both equal and unequal cluster sizes. 

 Evaluate and compare the variances of estimates obtained through cluster sampling under 
different designs. 

 Analyze the efficiency and cost-effectiveness of cluster sampling relative to other 
sampling techniques in large-scale surveys. 

 Implement practical procedures for drawing samples from populations using cluster 
sampling in real-world scenarios. 

 Recognize the challenges and limitations of cluster sampling, including intra-cluster 
correlation and design effects. 

STRUCTURE: 
 

 5.1   Introduction 

 5.2   Varying probability sampling 

 5.3   Cluster sampling with equal and unequal cluster sizes  

          5.3.1 Example   

5.4    Summary 

5.5    Key words 

5.6    Self-Assessment Questions 

5.7    Suggested Readings 

 
5.1  INTRODUCTION: 
 
 In statistics cluster sampling is a sampling plan used when mutually homogeneous yet 
internally heterogeneous groupings are evident in a statistical population. It is often used 
in marketing research. 

In this sampling plan, the total population is divided into these groups (known as clusters) 
and a simple random sample of the groups is selected. The elements in each cluster are then 



 
 
 

 

Centre for Distance Education                    5.2                      Acharya Nagarjuna University 
 

sampled. If all elements in each sampled cluster are sampled, then this is referred to as a "one-
stage" cluster sampling plan. If a simple random subsample of elements is selected within each 
of these groups, this is referred to as a "two-stage" cluster sampling plan. A common 
motivation for cluster sampling is to reduce the total number of interviews and costs given the 
desired accuracy. For a fixed sample size, the expected random error is smaller when most of 
the variation in the population is present internally within the groups, and not between the 
groups. 
 

5.2 VARYING PROBABILITY SAMPLING: 
 

The simple random sampling scheme provides a random sample where every unit in 
the population has an equal probability of selection. Under certain circumstances, more 
efficient estimators are obtained by assigning unequal probabilities of selection to the units in 
the population. This type of sampling is known as a varying probability sampling scheme. 
 

If Y is the variable under study and X is an auxiliary variable related to Y, then in the 
most commonly used varying probability scheme, the units are selected with probability 
proportional to the value of X, called as size. This is termed as probability proportional to a 
given measure of size (pps) sampling. If the sampling units vary considerably in size, then 
SRS does not take into account the possible importance of the larger units in the population. 
A large unit, i.e., a unit with a large value of Y contributes more to the population total than 
the units with smaller values, so it is natural to expect that a selection scheme that assigns 
more probability of inclusion in a sample to the larger units than to the smaller units would 
provide more efficient estimators than the estimators which provide equal probability to all 
the units. This is accomplished through pps sampling. 
 

Note that the “size” is the value of auxiliary variable X and not the value of study 
variable Y. For example, in an agriculture survey, the yield depends on the area under 
cultivation. So, bigger areas are likely to have a larger population, and they will contribute 
more to wards the population total, so the value of the area can be considered as the size of 
the auxiliary variable. Also, the cultivated area for a previous period can also be taken as the 
size while estimating the yield of the crop. Similarly, in an industrial survey, the number of 
workers in a factory can be considered as the measure of size when studying the industrial 
output from the respective factory. 

 
5.3  CLUSTER SAMPLING: 
 
 
  N Units Cluster-A Group of elements 
                                                                                                                                 Population   
                                                                                                                                               Containing N clusters 
  
  
                      Entire households is clusters      nclusters 
 

.   .      . 

.      . . 

.. 

M

n 
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4each+every are events                  N-Clusters, M-elements                         nM Elements 

Ex: wards: n×1=50 (clusters)  

Households, M=200 ,n=5×200=1000  

NM elements are there in the population n clusters N 

1. For artificial clusters has equal size.     Clusters, n 

2. For natural clusters has an unequal size      Sample  

 In SRS  
                                                N=10000 
 
                                            n=1000, households 

 
 

Prepare a sampling (for all the units in the population)frame for all at 1,2,…10,000, and we 
draw 1000 households using random number table, where as in cluster sampling we don’t use 
sampling frame for entire ‘ N’, and we prepare sampling frame only for ‘ n’ 
 
Cluster may be in equal or unequal size:  

EX:- If the population is apple tree then each branch is a cluster and fruits are elements.  
                  Population (N) > sample unit (1) > cluster (n) > element (M). 

Q:1 )How to draw a sample unit from cluster.  

DESCRIPTION: The smallest unit into which the population can be divided is called an 
element of the population. A group of such elements is known as a cluster. When the 
sampling unit is a cluster, the procedure is called cluster sampling. Hence cluster sampling 
consists in forming suitable clusters of elements and surveying all the elements in a sample of 
clusters selected according to an appropriate sampling scheme.     
i) Cluster may be of equal size and  ii) Cluster may be of unequal size. 

 
5.3.1  Examples of Sampling of Equal and Unequal  Clusters: 
 

    There are no. of situations where it is convenient to take certain naturally formed 
groups of elements as clusters and in such cases the cluster size would in generally vary 
from cluster to cluster for instance, households, which are groups of persons, and villages or 
urban blocks, which are groups of households and persons, are usually considered as 
clusters for purpose of sampling because of operational convenience. Though the size of 
natural clusters such as villages, branches of trees (clusters of leaves, flowers, fruits 
(elements)etc). Usually varies over cluster, it is possible to have equal clusters when clusters 
are artificially formed.  

     
For instance, in a crop survey, we may consider clusters of two or more plots or other 

area units of a given size and shape as clusters and in a house hold survey two or more 
neighbouring household may be grouped to form clusters. Similarly in a production  process 
in an industry the no. of items produced at regular intervals of time may be the same and the 
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production at different intervals of time can be considered to constitute the clusters.  
       

The rational choice between the two types of clusters may be made by the familiar 
principle of selecting the cluster that gives the smaller variance for a given cost or the 
minimum cost for a prescribed variance. When a list of individual houses is available, 
economic considerations may point to the choice of a larger cluster. For a given size of 
sample, a small cluster usually gives more precise results than a larger cluster. When cost is 
balanced against precision the larger cluster may prove superior. 

      
Clusters are generally made up of neither elements and therefore the elements within 

a cluster tend to have similar characteristics. 
                  

After dividing the population into specified clusters the required no. of clusters can be 
selected and all the elements in selected clusters are enumerated. Various sampling 
procedures, e.g., Simple Random, Stratified (or) Systematic Sampling procedure can be 
applied to cluster sampling by treating the clusters themselves as sampling unit. 

 
 Advantages of cluster sampling:- 

1) Collection of data for neighbouring elements in easier, cheaper, faster and 
operationally more convenient than observing units spread over a season. 

2) It is less costly than Simple Random Sampling due to the saving of time in Journeys, 
Identification, Contacts….etc. 

3) When the sampling frame of elements may not be readily available 
                         N 

 

  n Cluster (N) = N1 + N2 + N3 

 
 

Notations in the case of equal cluster size:- 
           N= No. of clusters in the population 
           n= No. of clusters in the sample 
           M= No. of elements in the cluster 
Let 𝑦௜௝ୀ observed values of 𝑗௧௛ element in the 𝑖௧௛ cluster (𝑖 = 1,2, … , 𝑁; 𝑗 = 1,2, … , 𝑀).   

𝑦௜ = 𝑖௧௛ Cluster, total =∑ 𝑦௜௝ = 𝑦௜ଵ + 𝑦௜ଶ + ⋯ + 𝑦௜ெ
ெ
௝ୀଵ  

       𝑌ത =
∑ ௬೔

ಿ
೔సభ

ே
= Mean per 𝑖௧௛ cluster in the population. 

 𝑌ന =
∑ ௬೔

ಿ
೔సభ

ேெ
 = Mean per element in the population,   𝑌ധ=𝑌ത/𝑀 

𝑦ത = ∑
௬೔

௡
=௡

௜ୀଵ  Mean per cluster in the sample 

 𝑦ന =
௬ത

ெ
=   Mean per element in the sample 

𝑁ଶ 
𝑁ଷ 
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        𝑆ଶ =
∑ ∑ (௬೔ೕି௒ധ)మಾ

೔సభ
ಿ
೔సభ

ேெ  ଵ
  = variance among elements in the population.   

𝜌: Intra cluster correlation coefficient between elements within clusters. 

𝜌 =
ா൫௬೔ೕି௒ധ൯(௬೔ೖି௒)ധധധ

ா(௬೔ೕି௒ധ)మ
 = 

௖௢௩௔௥௜௔௡௖௘

௩௔௥௜௔௡௖௘
 

𝜌 =

∑ ∑ ൫௬೔ೕି௒ധ൯(௬೔ೖି௒ധ)ೕ೔
ಿಾ(ಾషభ)

మ

∑ ∑ (௬೔ೕି௒ധ)ಾ
ೕసభ

మಿ
೔సభ

ேெ

=
2 ∑ ∑ ൫𝑦௜௝ − 𝑌ധ൯(𝑦௜௞ − 𝑌ധ)௝௜

(ெିଵ)

(ேெିଵ)ௌమ

 

𝜌 =
ଶ ∑ ∑ ൫௬೔ೕି௒ധ൯(௬೔ೖି௒ധ)ೕಬೖ೔

(ெିଵ)(ேெିଵ)ௌమ
           [∵ S2= 

∑ ୧ ∑ ୨൫୷౟ౠ ିଢ଼ന൯
మ

୒୑ିଵ
 ] 

 
𝐓𝐇𝐄𝐎𝐑𝐄𝐌 − 𝟐. 𝟐. 𝟏: − 
                                   A simple random sample of ‘n’ cluster, each containing M elements, is 

drawn from N clusters in the population. Then the sample mean per element 𝑦ധ is an 

unbiased estimate of 𝑌ധ with variance is  

𝑉(𝑦ധ) =
(1 − 𝑓)

𝑛

(𝑁𝑀 − 1)

𝑀ଶ(𝑁 − 1)
𝑆ଶ[1 + (𝑀 − 1)𝜌] 

          where  𝜌 is the intra cluster correlation coefficient. 
 
 
PROOF:- 

Let  𝑦௜ denote the total for the 𝑖௧௛ cluster and 𝑦ത =
∑ ௬೔

೙
೔సభ

௡
 

∴ 𝑦ത 𝑖𝑠 an unbiased estimate of 𝑌ത, with variance  

                       V(𝑦ത) =
(ଵି௙)

௡

∑ (௬೔ି௒ത)ಿ
೔సభ

ேିଵ

ଶ

 

𝑦ത = 𝑀𝑦ധ 𝑎𝑛𝑑 𝑌ത = 𝑀𝑌ധ 

           But 
௬ത

ெ
= 𝑦ധ 𝑎𝑛𝑑 

௒ത

ெ
= 𝑌ധ.  Hence 𝑦ധ is an unbiased estimate of 𝑌ധ with variance (M 

constant) 

                           V(𝑦ധ) = 𝑉 ቀ
௬ത

ெ
ቁ =

ଵ

ெమ
𝑉(𝑦ത) 

=
(ଵି௙)

௡ெమ

∑ (௬೔ି௒ത)ಿ
೔సభ

మ

ேିଵ
→ (1),   Since 

௒ത

ெ
= 𝑌ധ. 

But  (𝑦௜ − 𝑌ത) = ൫𝑦௜ଵ − 𝑌ധ൯ + ൫𝑦௜ଶ − 𝑌ധ൯ + ⋯ + ൫𝑦௜ெ − 𝑌ധ൯ 

    
  Square and sum over all N clusters 

෍(𝑦௜ − 𝑌ത)ଶ

ே

௜ୀଵ

= ෍ ෍(𝑦௜௝ − 𝑌ധ)ଶ

ெ

௝ୀଵ

ே

௜ୀଵ

+ 2 ෍ ෍൫𝑦௜௝ − 𝑌ധ൯(𝑦௜௞ − 𝑌ധ)

ெ

௝ழ௞

ே

௜ୀଵ

 

቎∵ Sଶ =
∑ ∑ ൫y୧୨ − Yന൯

ଶ୑
୨ୀଵ

୒
୧ୀଵ

NM − 1
቏ 

                                            =(NM-1)𝑠ଶ+(M-1)(NM-1)𝜌𝑠ଶ 
                                            = (𝑁𝑀 − 1))𝑠ଶ[1 + (𝑀 − 1)𝜌] →(2) 
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             Substituting equ (2) in equ (1) we get 

                      V(𝑦ധ) =
(ଵି௙)

௡ெమ(ேିଵ)
(𝑁𝑀 − 1)𝑠ଶ[1 + (𝑀 − 1)𝜌] 

                      V(𝑦ധ) =
(ଵି௙)

௡

(ேெିଵ)

ெమ(ேିଵ)
𝑠ଶ[1 + (𝑀 − 1)𝜌] 

 
NOTE:- If M =1, it gives the sampling variance of a SRSing of nM elements taken 
               individually. 

 Both the procedures are equally good in this situations. 
 If M>1and 𝜌 is positive cluster sampling with give a higher variance than the mean per 
element (i.e., SRS). 
              If 𝜌 is negative cluster sampling is more precise. 
 

QUESTION:- Describe the method of cluster sampling then define the mean of element (or) 
unit element per population and obtain variance [∴ (𝑁𝑀 − 1)𝑠ଶ]. 
 
COROLLARY:-  When N is large, prove that 

           V(𝑦ധ) =
(ଵି௙)

௡ெ
𝑠ଶ[1 + (𝑀 − 1)]𝜌 

substitute S2=
ே

ேିଵ
𝜎ଶ  we get ,[∵ 𝑁𝜎ଶ = (𝑁 − 1)𝑆ଶ] 

=
(𝑁 − 𝑛)

(𝑁 − 1)𝑛𝑀
𝜎ଶ[1 + (𝑀 − 1)𝜌] 

 

PROOF:-   Let   V(𝑦ധ) =
(ଵି௙)

௡

(ேெିଵ)

ெమ(ேିଵ)
𝑠ଶ[1 + (𝑀 − 1)𝜌]. 

When N is large 
ଵ

ேெ
𝑎𝑛𝑑 

ଵ

ே
 are considered negligible. 

∴ 𝑉(𝑦ധ) =
(1 − 𝑓)

𝑛𝑀
𝑠ଶ[1 + (𝑀 − 1)𝜌]

(𝑁𝑀 − 1)

𝑀(𝑁 − 1)
 

            Dividing with NM both in Numerator and Denominator of R.H.S then we get 

∴ 𝑉(𝑦ധ) =
(1 − 𝑓)

𝑛𝑀
𝑠ଶ[1 + (𝑀 − 1)𝜌]

1 −
ଵ

ேெ

1 −
ଵ

ே

 

⟹ 𝑉(𝑦ധ) =
(ଵି௙)

௡ெ
𝑠ଶ[1 + (𝑀 − 1)𝜌]. 1            [∵

ଵି଴

ଵି଴
] 

             From the definitions of 𝑠ଶand 𝜎ଶ 

෍(𝑦௜ − 𝑌ത)ଶ

ே

௜ୀଵ

= (𝑁 − 1)𝑠ଶ = 𝑁𝜎ଶ 

⟹ 𝑠ଶ = (
𝑁

𝑁 − 1
)𝜎ଶ 

∴  𝑉(𝑦ധ) =
(ଵି௙)

௡ெ
(

ே

ேିଵ
)𝜎ଶ[1 + (𝑀 − 1)𝜌]       [∵ 𝑓 =

௡

ே
] 

                                           V(𝑦ധ) =
ଵି

೙

ಿ

௡ெ
(

ே

ேିଵ
)𝜎ଶ[1 + (𝑀 − 1)𝜌] 

∴  𝑉(𝑦ധ) =
(𝑁 − 𝑛)

𝑛𝑀(𝑁 − 1)
𝜎ଶ[1 + (𝑀 − 1)𝜌] 
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5.4  SUMMARY:   
 

Summary and Conclusion:  
 Varying Probability Sampling improves precision by giving higher selection 

chances to more important or larger units. 
 Cluster Sampling reduces costs and increases feasibility when population elements 

are naturally grouped. 
 While equal-sized clusters simplify the analysis, real-world applications often involve 

unequal clusters, requiring appropriate estimation techniques. 
 Both methods are valuable in large-scale surveys and form the backbone of sampling 

strategies in fields like social sciences, economics, and public health. 
 
5.5  KEY WORDS: 

 
 Varying Probability Sampling 

 PPS Sampling 

 Horvitz-Thompson Estimator 

 Cluster Sampling 

 Equal Cluster Sizes 

 Unequal Cluster Sizes. 

 

  5.6  SELF- ASSESSMENT QUESTIONS: 
 

1. Define varying probability sampling and give an example. 
2. What are the advantages of using PPS sampling? 
3. Distinguish between equal and unequal cluster sampling. 
4. In what situations is cluster sampling more suitable than simple random sampling? 
5. How does the choice of cluster size affect the precision of estimates? 
6. Explain cluster sampling technique with equal and unequal cluster sizes. 
7. Describe the sampling technique with varying probabilities without replacement. 

 

5.7  SUGGESTED READINGS: 
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New Age International. 
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LESSON- 6 

OPTIMUM CLUSTER SIZE 
 

OBJECTIVES: 
 

Upon completion of this unit, learners will be able to: 
1. Understand the Concept of Optimum Cluster Size 

o Define and determine the optimum cluster size under a fixed survey cost constraint. 
o Analyze the trade-offs between cost and precision in cluster sampling. 
o Apply mathematical expressions to identify the optimal number of elements per 

cluster for cost-efficient data collection. 
2. Comprehend PPS (Probability Proportional to Size) Sampling Techniques 

o Understand the principles of PPS sampling with and without replacement. 
o Differentiate between sampling with and without replacement in terms of procedure, 

estimator properties, and efficiency. 
3. Learn the Procedures for Selecting a Sample in PPS Sampling 

o Describe and perform PPS sample selection using various methods such as 
cumulative total method and systematic PPS. 

o Implement appropriate procedures for both with-replacement and without-
replacement designs. 

4. Estimation and Variance in PPS Sampling 
o Derive and apply unbiased estimators for the population total under PPS sampling 

with replacement. 
o Compute the sampling variance of the estimator under PPS with replacement. 
o Compare efficiency and reliability of estimators under PPSWR and PPSWOR 

schemes. 
5. Apply Theoretical Knowledge to Practical Survey Design 

o Integrate concepts of optimum cluster size and PPS sampling into the design of 
practical, cost-effective survey plans. 

o Evaluate the advantages and limitations of PPS methods in real-world sampling 
situations. 

 

STRUCTURE: 
 

  6.1  Introduction 

  6.2  Optimum cluster size for fixed cost 

  6.3  Probability Proportional to Size (PPS) Sampling 

  6.4  PPS sampling with and without replacements 

  6.5  Sample Selection Procedures in PPS Sampling 

  6.6  Summary 

  6.7  Key words 
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  6.8  Self Assessment Questions 

  6.9  Suggested Reading 

 
6.1 INTRODUCTION: 
 

The optimum number of clusters can be defined as follow: Compute clustering 
algorithm (e.g., k-means clustering) for different values of k. For instance, by varying k from 
1 to 10 clusters. For each k, calculate the total within-cluster sum of square (wss). Plot the 
curve of wss according to the number of clusters k. 

  

These methods include direct methods and statistical testing methods: 
1. Direct methods: consists of optimizing a criterion, such as the within cluster sums of 

squares or the average silhouette. The corresponding methods are 
named elbow and silhouette methods, respectively. 

2. Statistical testing methods: consists of comparing evidence against null hypothesis. An 
example is the gap statistic. 

 

In addition to elbow, silhouette and gap statistic methods, there are more than thirty other 
indices and methods that have been published for identifying the optimal number of clusters. 
We’ll provide R codes for computing all these 30 indices in order to decide the best number 
of clusters using the “majority rule”. 
 
6.2 OPTIMUM CLUSTER SIZE FOR FIXED COST:   

 In cluster sampling, the sampling variance increases with cluster size and decreases with 
increasing no. of sample clusters, while the cost decreases with increasing cluster size and 
increases with no. of sample clusters. Hence ,in practice it is necessary to strike a balance 
between these two opposing points of view by finding the optimum values for the cluster size 
(M) and the no. of sample clusters(n), which would minimize the sampling variance for a 
fixed cost (or) alternatively minimize the cost for a specified sampling variance. 

(1) 𝑉 ↑ 𝑀 ↑              𝑉 ↓ 𝑛 ↑ 

(2) 𝐶 ↓ 𝑀 ↑               𝐶 ↑ 𝑛 ↑ 

QUESTION:- In cluster sampling of equal cluster sizes, derive the expressions for the 
optimum values of M and n (cluster size and no. of clusters) for a fixed cost function:- 
ANS :-  ANOVA for the whole population (on element basis) 
 

Source of variation Degrees of freedom Mean square 

Between clusters (N-1) 𝑆௕
ଶ 

Between elements 
within clusters 

N(M-1) 𝑆௪
ଶ  

Between elements in 
the population 

NM-1 
𝑆ଶ =

(𝑁 − 1)𝑆௕
ଶ + 𝑁(𝑀 − 1)𝑆௪

ଶ

𝑁𝑀 − 1
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In several agricultural surveys, 𝑆௪ 
ଶ  appeared to be related to M by the empirical formula 

 𝑆௪
ଶ = 𝐴𝑀௚(𝑔 > 0)  , where “A” and “g” are constants that do not depend on M. 

  In this formula 𝑆௪
ଶ  increases steadily as M increases. Usually “g” is small. 

 

    From the ANOVA table, we find  

                      𝑠௕
ଶ =

(𝑁𝑀 − 1)𝑆ଶ − 𝑁(𝑀 − 1)𝑆௪
ଶ

(𝑁 − 1)

=
(𝑁𝑀 − 1)𝑆ଶ − 𝑁(𝑀 − 1)𝐴𝑀௚

(𝑁 − 1)
[∵ 𝑆௪

ଶ = 𝐴𝑀௚] 

  Dividing ‘N’ on both Numerator and Denominator                          

𝑠௕
ଶ =

ቀ𝑀 −
ଵ

ே
ቁ 𝑆ଶ − (𝑀 − 1)𝐴𝑀௚

1 −
ଵ

ே

 

When N is large,  ignore 
ଵ

ே
 , 

∴ 𝑠௕
ଶ = 𝑀𝑆ଶ − (𝑀 − 1)𝐴𝑀௚ ⟶ (1) 

In an extensive survey the nature of the field costs plays a large part in determining the 

optimum cluster. Two components of field costs are distinguished. The component 𝑐ଵ𝑀𝑛  

comprises costs that vary directly with the total no. of elements (farms). Thus 𝑐ଵ contains the 

cost of interview and the cost of travel from farm to farm with in cluster. The 2௡ௗ component, 

𝑐ଶ√𝑛 , measures  the cost of travel between clusters. The total field cost is therefore  

𝐶 = 𝑐ଵ𝑀𝑛 + 𝑐ଶ√𝑛 ⟶ (2)           
○⟶○⟶○....○

௖భ௠௡ା௖మ√௡ୀ஼
 

 Assuming SRSing and ignoring the fpc, the variance of  the mean per element 𝑦ധ is    V(𝑦ധ) =

ௌ್
మ

௡ெ
   [∵From  Theorem-9.2 &𝑆௕

ଶ] 

   From equation (1) ,this equals 

V(𝑦ധ) =
ெௌమି(ெିଵ)஺ெ೒

௡ெ
 

Dividing both Nr and Dr with M 

=

ଵ

ெ
[𝑀𝑆ଶ − (𝑀 − 1)𝐴𝑀௚]

௡ெ

ெ

 

𝑉 = 𝑉(𝑦ത) =
ௌమି(ெିଵ)஺ெ೒షభ

௡
⟶(3)    (dv/dn= -k/(n2  )   =   -(k/n) 1/n= -v/n) 

 To determine the optimum size of cluster, we find M, and incidentally n, to minimize V for 

fixed 𝐶 

This gives,  
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2𝑐ଵ𝑀√𝑛

𝑐ଶ
= (1 +

4𝐶𝑐ଵ𝑀

𝑐ଶ
ଶ )

భ

మ − 1 ⟶ (4) 

 

From equation (2) 

𝑎𝑥ଶ + 𝑏𝑥 + 𝑐 = 0;                     𝑐ଵ𝑀𝑛 + 𝑐ଶ√𝑛 − 𝐶 = 0 

𝑎 = 𝑐ଵ𝑀,         𝑏 = 𝑐ଶ,              𝑐 = −𝐶 ∴ 𝑥 =
ି௕±√௕మିସ௔௖

ଶ௔
    ,                                    

∴ √𝑛 =
ି௖మ±ට௖మ

మାସ௖భெ஼

ଶ௖భெ
 

2𝑐ଵ𝑀√𝑛 = −𝑐ଶ ± (𝑐ଶ
ଶ + 4𝑐ଵ𝑀𝐶)

భ

మ 

 We take some positive quantity 

= −𝑐ଶ + 𝑐ଶ ቜ1 +
4𝑐ଵ𝑀𝐶

𝑐ଶ
ଶ ቝ

భ

మ

= 𝑐ଶ ቈ−1 + (1 +
4𝑐ଵ𝑀𝐶

𝑐ଶ
ଶ )

భ

మ቉ 

2𝑐ଵ𝑀√𝑛

𝑐ଶ
= (1 +

4𝑐ଵ𝑀𝐶

𝑐ଶ
ଶ )

భ

మ − 1 ⟶ (4) 

  The equation to be minimized is  

               C+λ𝑉 = 𝑐ଵ𝑀𝑛 + 𝑐ଶ√𝑛 + λ𝑉 ⟶ (5)   (∵Adding ‘λ𝑉′ on both sides) 

  Differentiating and noting that 
డ௩

డ௡
=

ି௏

௡
. 

  We obtain the equation 

 for  n : 𝑐ଵ𝑀 +
ଵ

ଶ
𝑐ଶ𝑛

షభ

మ = −λ
డ௏

డ௡
= λ

௏

௡
⟶ (6) 

                      and for M: 𝑐ଵ𝑛 = −λ
డ௏

డெ
⟶ (7) 

Dividing (7) by (6) to eliminate λ . This gives 

λ
𝜕𝑉

𝜕𝑀
.

𝑛

λ v
 =

−𝑐ଵ𝑛

𝑐ଵ𝑀 +
ଵ

ଶ
𝑐ଶ𝑛

షభ

మ

 

 Multiply with M on both sides 

𝑀𝜕𝑉

𝑉𝜕𝑀
=

−𝑐ଵ𝑀

𝑐ଵ𝑀 +
ଵ

ଶ
𝑐ଶ𝑛

షభ

మ

=
−1

1 +
௖మ

ଶ௖భெ√௡

⟶ (8) 
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 If we substitute for √𝑛 from eq (4) we obtain after some manipulation 

𝑀𝜕𝑉

𝑉𝜕𝑀
= (1 +

4𝐶𝑐ଵ𝑀

𝑐ଶ
ଶ )ି 

 భ

మ − 1 ⟶ (9) 

  By writing out the left side of equ (9) in full and changing signs on both sides we find, 

                                    V=
ௌమି(ெିଵ)஺ெ೒షభ

௡
=

ௌమି஺ெ೒ା஺ெ೒షభ

௡
 

𝜕𝑉

𝜕𝑀
=

1

𝑛
[−𝐴𝑔𝑀௚ିଵ + 𝐴(𝑔 − 1)𝑀௚ିଶ] 

𝑀

𝑉

𝜕𝑉

𝜕𝑀
=

ெ

௡
[−𝐴𝑔𝑀௚ିଵ + 𝐴(𝑔 − 1)𝑀௚ିଶ]

ௌమି(ெିଵ)஺ெ೒షభ

௡

 

−
𝑀

𝑉

𝜕𝑉

𝜕𝑀
=

𝐴𝑀௚ିଵ[𝑔𝑀 − (𝑔 − 1])

𝑆ଶ − (𝑀 − 1)𝐴𝑀௚ିଵ
 

𝐴𝑀௚ିଵ[𝑔𝑀 − (𝑔 − 1)]

𝑆ଶ − (𝑀 − 1)𝐴𝑀௚ିଵ
= 1 − ቆ1 +

4𝐶𝑐ଵ𝑀

𝑐ଶ
ଶ ቇ

ିଵ
ଶൗ

→ (10) 

   
This equ (10) gives optimum ‘M’ by iterative method (it is difficult to get on explicit 
expression for M). 
Equation (4) can be written as  

2𝑐ଵ𝑀√𝑛

𝑐ଶ
=

(𝑐ଶ
ଶ + 4𝑐ଵ𝐶𝑀)

భ

మ

𝑐ଶ
− 1 

2𝑐ଵ𝑀√𝑛

𝑐ଶ
=

(𝑐ଶ
ଶ + 4𝑐ଵ𝐶𝑀)

భ

మ − 𝑐ଶ

𝑐ଶ
 

2𝑐ଵ𝑀√𝑛 = (𝑐ଶ
ଶ + 4𝑐ଵ𝐶𝑀)

భ

మ − 𝑐ଶ 

൫2𝑐ଵ𝑀√𝑛൯
ଶ

= ቀ(𝑐ଶ
ଶ + 4𝑐ଵ𝐶𝑀)

భ

మ − 𝑐ଶቁ
ଶ

 

𝑛 = ቎
(𝑐ଶ

ଶ + 4𝑐ଵ𝐶𝑀)
భ

మ − 𝑐ଶ

2𝑐ଵ𝑀
቏

ଶ

→ (11) 

On substituting the value of “M” obtained from (10) in (11) , we can obtain the optimum 
value of ‘n’. 
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UNEQUAL CLUSTSER SAMPLING:- 

        Suppose there are N clusters in the population. Let the 𝑖௧௛  cluster consists of 𝑀௜ 

elements (𝑖 = 1,2, … , 𝑁) and ∑ 𝑀௜ = 𝑀଴
ே
௜ୀଵ  

                              The population mean for element 𝑌ധ is defined by  

𝑌ധ =
∑ ∑ 𝑦௜௝

ெ௜
௝ୀଵ

ே
௜ୀଵ

∑ 𝑀௜
ே
௜ୀଵ

=
∑ 𝑀௜

ே
௜ୀଵ 𝑦ప.ഥ

𝑀଴
 

Where𝑦ప.ഥ =
∑ ௬೔ೕ

ಾ೔
ೕసభ

ெ೔
is the mean for elements of the 𝑖௧௛ cluster. 

The sample mean for element is given by  

𝑦ത௡
ᇱ =

∑ ெ೔
೙
೔సభ ௬ഢ.തതതത

∑ ெ೔
೙
೔సభ

→ (1)  where  𝑦ത௡
ᇱ is not unbiased. 

 
THEOREM- 2.2.2 :- 

The estimator of the mean 𝑌ധis given by equation (1) which is a weighted mean of the cluster 
means and a ratio of two random variables is not unbiased. Its sampling variance is given by 

𝑉(𝑦ത௡
ᇱ ) =

(ଵି௙)

௡
𝑠௕

ᇱଶ. 

Where 𝑠௕
ᇱଶ =

∑ ெ೔
మ(௬ത೔.ି௒ധ)మಾ

೔సభ

ெഥమ(ேିଵ)
 

and 𝑀ഥ =
ெబ

ே
=

∑ ெ೔
ಿ
೔సభ

ே
 . 

 
PROOF :-      From Theorem 6.1 of ratio estimation, we know that  

V(𝑅෠)=
(ଵି௙)

௡௑തమ

ൣ∑ (௬೔ିோ௫೔)మಿ
೔సభ ൧

(ேିଵ)
. 

                     Where  𝑅෠ =
௬ത

௫̅
 , 𝑅 =

∑ ௬೔
ಿ
೔సభ

∑ ௫೔
ಿ
೔సభ

=
௒ത

௑ത
 

 The estimator 𝑦ത௡
ᇱ is given by replace in 𝑥௜ by 𝑀௜ and 𝑦௜ by 𝑀௜𝑦ത௜. in ratio estimator mean𝑅෠. 

  We have seen that the ratio estimate is not unbiased. 
                             Substituting  𝑥௜ = 𝑀௜ , 𝑦௜ = 𝑀௜𝑦ത௜. 

                  Then 𝑅෠ =
∑ ெ೔

೙
೔సభ ௬ഢ.തതതത

∑ ெ೔
೙
೔సభ

= 𝑦ത௡
ᇱ    (from definition) 

                         𝑅 =
∑ ெ೔

ಿ
೔సభ ௬ഢ.തതതത

∑ ெ೔
ಿ
೔సభ

= 𝑌ധ    (𝑏𝑦  definition) 

 𝑋ഥ ଶ = (
∑ ௫೔

ಿ
೔సభ

ே
)ଶ = (

∑ ெ೔
ಿ
೔సభ

ே
)ଶ = 𝑀ഥଶ           (by given statement) 

                  V(𝑦ത௡
ᇱ ) =

(ଵି௙)

௡ெഥమ(ேିଵ)
ൣ∑ (𝑀௜𝑦ത௜. − 𝑌ധ𝑀௜)ଶே

௜ୀଵ ൧ 

                             =
(ଵି௙)

௡ெഥమ(ேିଵ)
∑ 𝑀௜

ଶ(𝑦ത௜. − 𝑌ധ)ଶே
௜ୀଵ  

                  V(𝑦ത௡
ᇱ ) =

(ଵି௙)

௡
(𝑆௕

ᇱ )ଶ   (given in the stratum) 

𝑀ഥ= Average cluster size in the population 
 
 



 
 
 

 
Sampling Theory                                            6.7                              Optimum Cluster Size 

COROLLARY:-  An unbiased estimator of V(𝑦ത௡
ᇱ )is given by  

𝑣(𝑦ത௡
ᇱ ) =

(ଵି௙)

௡
(𝑠௕

ᇱ )ଶ, Where (𝑠௕
ᇱ )ଶ =

∑ ெ೔
మ(௬ത೔.ି௬ത೙

ᇲ )మ೙
೔సభ

(ெഥᇲ)మ(௡ିଵ)
And 𝑀ഥ ᇱ=

∑ ெ೔
೙
೔సభ

௡
 

  𝑀തതതതᇱ →  Average cluster size in the sample. 
 
DIFFERENCE OF STRATA AND CLUSTSER:- 
 Strata and cluster are both non-overlapping sub-sets of the population 
(1) All strata are represented in the sample; but only a subset of clusters are in the sample. 
(2) Cluster sampling gives less precision than either SRS or STRS  
Ex:- sometimes the cost per sample points less for cluster sampling than for other sampling 

methods . Given a fixed budget, the researcher may be able to use a bigger sample with 
cluster sampling than with the other methods, when the increased sample size is 
sufficient to offset the loss in precession, cluster sampling may be the best choice. 

 
DISADVANTAGES:- 

It gives higher sampling error, which can be expressed in the so-called “design effect”. 
 

Definition:- The ratio between the no. of subjects in the cluster study and the no. of 
                            subjects in an equally reliable, randomly sampled un clustered study. 
 
6.3  PROBABILITY PROPORTIONAL SIZE SAMPLING (OR) PPS SAMPLING: 
 
           We are drawing a sample from population probability is proportional to the size of the 
sample.   PPS-probability proportional size sampling-size is important. 
            

In SRSing the selection probabilities were equal for all units of the population. When 
ever the units vary in size SRSing is not an appropriate procedure as no importance is given 
to the size of the unit such ancillary information about the size of the units can be utilized in 
selecting the sample so as to get more efficient estimators of the population parameter’s. one 
such method is to assign unequal probability of selection to different units in the population 
depending on their sizes with orchards (garden of fruit trees) having varying no’s of fruit 
trees, it may be desirable to provide Sampling scheme in which orchards are selected with 
probability proportional to the number of trees in the orchards. When units vary in their sizes 
and the variate under study is highly correlated with the size of the unit, the probability of 
selection may be assigned in proportion to the size of the unit, (the probability). This type of 
sampling procedure where the probability of selection is proportional to the size of the units 
known as probability proportional size sampling abbreviated as PPS sampling. 
 
QUESTION:- What is PPS Sampling and describe PPS Sampling? 
 
         There is a basic difference between SRSing and PPS Sampling procedures. In SRSing 
the Probability of drawing any specified unit at any given draw is the same, while in PPS 
Sampling it differs, from draw to draw. The theory of PPS Sampling is consequently more 
complex than that of SRSing. 
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6.4  PPS SAMPING WITH REPLACEMENT :- 

       There are two methods of selection: 
(1) Cumulative total method 
(2) Lahiri’s method 

1. CUMULATIVE TOTAL METHOD:- 

         Let the size of the 𝑖௧௛ unit be 𝑋௜(𝑖 = 1,2, … , 𝑁) the total being = ∑ 𝑋௜
ே
௜ୀଵ  . We associate 

the no’s 1to𝑋ଵ with the first unit, the no’s (𝑋ଵ + 1)  to (𝑋ଵ + 𝑋ଶ) with second unit and so on. 
A number ‘k’ is choose at random from 1toX and the unit which this number is associated is 
selected clearly the 𝑖௧௛  unit in the population is being selected with a probability proportional 
to 𝑋௜. If a sample of size, ‘n’ is required the procedure is repeated n-times with replacement 
of the units selected. This procedure of selection is known as cumulative total method for the 
method needs cumulation of the unit sizes. 
        The main difficulty in this procedure is the compulsion to complete successive 
cumulative totals, which becomes time consuming and costly when the population size, ‘N’ is 
large. 
 

Example:-   A village has 10-holdings consisting of 50,30,45,25,40,26,44,35,28 and 27 fields 
respectively select a sample of 4-holdings with the replacement method and which 
Probability proportional to the no. of fields in the holding. 
 

          The first step in the selection of holdings is to cumulative totally as shown below: 

S. No. 
HOLDINGS 

SIZE(𝑋௜) CUMMULATIVE 
SIZE 

NUMBERS 
ASSOCIATED 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

50 
30 
45 
25 
40 
26 
44 
35 
28 
27 

50 
80 
125 
150 
190 
216 
260 
295 
323 

                 350 

1-50 
51-80 
81-125 
126-150 
151-190 
191-216 
217-260 
261-295 
296-323 
324-350 

 

272-8, 326-10, 165-5, 094-3 (these 4 no’s are selected only by randomly and using 
with replacement) 
          To select a holding, a random number not exceeding 350 is drawn with the help of a 
random number table. Suppose the random number thus selected in 272. It can be seen from 
the cumulative totals that the number is associated with the group 261-295 i.e., the 8௧௛  
holding is selected corresponding to the random no.272. 
           Similarly, we select 3 more random numbers. Suppose these no’s are 326,165,and 094 
then the holdings selected corresponding to these random no’s are 326,165, and 094 then the 
holdings selected corresponding to these random no’s of the10௧௛ , 5௧௛ , 𝑎𝑛𝑑 3௥ௗ respectively. 
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Hence a sample of 4 holding selected with Probability Proportional to size will contain the 
8௧௛ , 10௧௛ , 5௧௛, 𝑎𝑛𝑑 3௥ௗ holdings. 
 

QUESTION:-  Explain cumulative method with give illustrative example? 

2.  LAHIRI’S METHOD [FOR PPS SAMPLING WITH REPLACEMENT]: 
       Lahiri in 1951 suggested an alternative procedure in which cumulations are avoided 
completely. It consists in selecting a number at random between 1and N and noting down the 
unit with the corresponding serial number, provisionally. Another random no. is then chosen 
b/w I and M, where M is the maximum size of the N units of the population. 
       If the second random no is smaller than the size of the unit provisionally selected, the 
units selected into the sample. If not, the entire procedure is repeated until a unit is finally 
selected for selecting a sample of n-units, the procedure is to be repeated until n-units are 
selected. 
Example: 

S. No of 
holdings 

1 2 3 4 5 6 7 8 9 10 

size(𝑋௜) 50 30 45 25 40 26 44 35 28 27 
 
In this case N=10,M=50. First we have to select a random number which is not greater than 
10 and a 2nd random number which is not greater than 50. Referring to the random number 
table, the pairs is (10,13). Hence the 10th unit is selected in the sample. Similarly choosing 
other pairs we can have (4,26),(5,35),(7,26). The pair (4, 26) is rejected as 26 is greater than 
the size value (25) and so another pair is drawn which turns out to be (8, 16) hence the 
sample will consists of the holdings with serial no’s 10, 5, 7 and 8. 
 
6.6  ESTIMATION IN PPS SAMPLING WITH REPLACEMENT: 

  

1 2 . . . N 

u1 u2 . . . uN 

𝑦1 y2 . . . yN 

 

Consider a population of N-units and let 𝑦௜ be the value of the characteristic under study for 

the unit 𝑢௜ of the population(𝑖 = 1,2, … , 𝑁). Suppose further that 𝑝௜ =
௑೔

௑
 (=size of the unit) 

be the Probability that the unit 𝑢௜ is selected in a sample of, ‘1’ such that ∑ 𝑝௜ = 1ே
௜ୀଵ . Let n 

independent selections be made with the replacement method and the value of 𝑦௜ for each 
selected unit be observed further, let (𝑦௜, 𝑝௜) be the value and Probability of selection of the 

ith unit of the sample. It can be seen that the random variables 
௬೔

௣೔
(𝑖 = 1,2, … , 𝑛) are 

independently and identically distributed. If 𝑝௜ =
ଵ

ே
 , it gives rise to a SRS. This shows that 

SRSing is a particular case of PPS Sampling.       
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Theorem-2.2.3: In PPS sampling with replacement, an unbiased estimator of the population 

total Y is given by 𝑌෠௉௉ௌ =
ଵ

௡
∑ ቀ

௬೔

௣೔
ቁ௡

௜ୀଵ  with its Sampling variance 𝑉൫𝑌෠௉௉ௌ൯ =
ଵ

௡
∑ 𝑝௜ ቀ

௬೔

௣೔
− 𝑌ቁ

ଶ
ே
௜ୀଵ  

Proof: Let us define random variates  𝑧௜ = ቀ
௬೔

௣೔
ቁ and (𝑖 = 1,2, … , 𝑛) 

          Which are independently and identically distributed 

                 Hence 𝐸(𝑧௜) = ∑ 𝑝௜ ቀ
௬೔

௣೔
ቁே

௜ୀଵ = 𝑌. 

                Now, let us consider 𝑧̅ =
ଵ

௡
∑ 𝑧௜

௡
௜ୀଵ    (∵ Simple average of 𝑧௜) 

Since 𝐸൫𝑌෠௉௉ௌ൯ = 𝐸 ቀ
ଵ

௡
∑

௬೔

௣೔

௡
௜ୀଵ ቁ = 𝐸 ቀ

ଵ

௡
∑ 𝑧௜

௡
௜ୀଵ ቁ = 𝐸(𝑧̅)[∵ By statement 𝑌෠௉௉ௌ =  

ଵ

௡
∑ ቀ

௬೔

௣೔
ቁ௡

௜ୀଵ ] 

∴ 𝐸൫𝑌෠௉௉ௌ൯ = 𝐸(𝑧̅) = ෍
1

𝑛
𝐸(𝑍௜) = 𝑌

௡

௜ୀଵ

 

∴ 𝑌෠௉௉ௌ is an unbiased estimator of Y. 

𝑉൫𝑌෠௉௉ௌ൯ = 𝑉(𝑧̅) = 𝑉 ൭
1

𝑛
෍ 𝑧௜

௡

௜ୀଵ

൱ 

=
ଵ

௡మ
∑ 𝑉(𝑧௜)

௡
௜ୀଵ =

ଵ

௡మ
𝑛 ∑ 𝑝௜(𝑧௜ − 𝑌)ଶே

௜ୀଵ , since 𝐸(𝑧௜) = 𝑌 

𝑉൫𝑌෠௉௉ௌ൯ =
1

𝑛
෍ 𝑝௜ ൬

𝑦௜

𝑝௜
− 𝑌൰

ଶ
ே

௜ୀଵ

 

Corollary: An unbiased estimator of the population mean 𝑌ത is given by 𝑌ത෠௉௉ௌ =
ଵ

௡ே
∑ ቀ

௬೔

௣೔
ቁ௡

௜ୀଵ , 

with its Sampling variance is 𝑉ቀ𝑌ത෠௉௉ௌቁ =
ଵ

௡
∑ 𝑝௜ ቀ

௬೔

ே௣೔
− 𝑌തቁ

ଶ

.ே
௜ୀଵ  

Proof: Let 𝑉ቀ𝑌ത෠௉௉௦ቁ =
ଵ

ேమ
𝑉൫𝑌෠௉௉ௌ൯ 

=
ଵ

ேమ

ଵ

௡
∑ 𝑝௜ ቀ

௬೔

௣೔
− 𝑌ቁ

ଶ
ே
௜ୀଵ =

ଵ

௡
∑ 𝑝௜ ቀ

௬೔

ே௣೔
−

௒

ே
ቁ

ଶ
ே
௜ୀଵ =

ଵ

௡
∑ 𝑝௜ ቀ

௬೔

ே௣೔
− 𝑌തቁ

ଶ
ே
௜ୀଵ . 

 

Theorem-2.2.4: In PPS Sampling with replacement an unbiased estimator of 𝑉൫𝑌෠௉௉ௌ൯ is 

given by  

𝑣൫𝑌෠௉௉ௌ൯ =
ଵ

௡(௡ିଵ)
∑ ቀ

௬೔

௣೔
− 𝑌෠௉௉ௌቁ

ଶ

,௡
௜ୀଵ for n>1 

              =
ଵ

௡(௡ିଵ)
൤∑ ቀ

௬೔

௣೔
ቁ

ଶ
௡
௜ୀଵ + ∑ ൫𝑌෠௉௉ௌ൯

ଶ௡
௜ୀଵ − 2 ∑

௬೔

௣೔

௡
ୀଵ 𝑌෠௉௉ௌ൨ 

              =
ଵ

௡(௡ିଵ)
൤∑ ቀ

௬೔

௣೔
ቁ

ଶ
௡
௜ୀଵ + 𝑛𝑌෠௉௉ௌ

ଶ − 2𝑛𝑌෠௉௉ௌ
ଶ ൨                   ቂ∵ 𝑌෠௉௉ௌ =

ଵ

௡
∑

௬೔

௣೔

௡
௜ୀଵ ቃ 

𝑣൫𝑌෠௉௉ௌ൯ =
ଵ

௡(௡ିଵ)
൤∑ ቀ

௬೔

௣೔
ቁ

ଶ
௡
௜ୀଵ − 𝑛𝑌෠௉௉ௌ

ଶ ൨⟶(1) 

Proof: By the usual algebraic identity 

෍ ൬
𝑦௜

𝑝௜
− 𝑌෠௉௉ௌ൰

ଶ
௡

௜ୀଵ

= ෍ ൤൬
𝑦௜

𝑝௜
− 𝑌൰ − ൫𝑌෠௉௉ௌ − 𝑌൯൨

ଶ
௡

௜ୀଵ

 

= ෍ ൬
𝑦௜

𝑝௜
− 𝑌൰

ଶ
௡

௜ୀଵ

+ ෍൫𝑌෠௉௉ௌ − 𝑌൯
ଶ

௡

௜ୀଵ

− 2 ෍ ൬
𝑦௜

𝑝௜
− 𝑌൰

௡

௜ୀଵ

൫𝑌෠௉௉ௌ − 𝑌൯ 
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= ෍ ൬
𝑦௜

𝑝௜
− 𝑌൰

ଶ
௡

௜ୀଵ

+ 𝑛൫𝑌෠௉௉ௌ − 𝑌൯
ଶ

− 2 ෍ ൬
𝑦௜

𝑝௜
− 𝑌൰ ൫𝑌෠௉௉ௌ − 𝑌൯

௡

௜ୀଵ

 

  Since 𝑌෠௉௉ௌ =
ଵ

௡
∑ ቀ

௬೔

௣೔
ቁ௡

௜ୀଵ ⇒ 𝑛𝑌෠௉௉ௌ = ∑ ቀ
௬೔

௣೔
ቁ௡

௜ୀଵ  

 Then ∑ ቀ
௬೔

௣೔
− 𝑌ቁ௡

௜ୀଵ = 𝑛൫𝑌෠௉௉ௌ − 𝑌൯ ቂ∵ ∑ ቀ
௬೔

௣೔
ቁ − 𝑛𝑌 = 𝑛𝑌෠௉௉ௌ − 𝑛𝑌 = 𝑛൫𝑌෠௉௉ௌ − 𝑌൯௡

௜ୀଵ ቃ 

∴ ෍ ൬
𝑦௜

𝑝௜
− 𝑌෠௉௉ௌ൰

௡

௜ୀଵ

= ෍ ൬
𝑦௜

𝑝௜
− 𝑌൰

ଶ
௡

௜ୀଵ

+ 𝑛൫𝑌෠௉௉ௌ − 𝑌൯
ଶ

− 2𝑛൫𝑌෠௉௉ௌ − 𝑌൯
ଶ
 

∴ ෍ ൬
𝑦௜

𝑝௜
− 𝑌෠௉௉ௌ൰

ଶ
௡

௜ୀଵ

= ෍ ൬
𝑦௜

𝑝௜
− 𝑌൰

ଶ
௡

௜ୀଵ

− 𝑛൫𝑌෠௉௉ௌ − 𝑌൯
ଶ

→ (2) 

             From equation (1) 

𝑛(𝑛 − 1)𝑣൫𝑌෠௉௉ௌ൯ = ෍ ൬
𝑦௜

𝑝௜
− 𝑌෠௉௉ௌ൰

ଶ
௡

௜ୀଵ

 

       From (2), we have 

𝑛(𝑛 − 1)𝑣൫𝑌෠௉௉ௌ൯ = ෍ ൬
𝑦௜

𝑝௜
− 𝑌൰

ଶ
௡

௜ୀଵ

− 𝑛൫𝑌෠௉௉ௌ − 𝑌൯
ଶ

→ (3) 

 Taking expectation on both sides of equation (3) 

𝑛(𝑛 − 1)𝐸ൣ𝑣൫𝑌෠௉௉ௌ൯൧ = 𝐸 ൥෍ 𝑡௜ ൬
𝑦௜

𝑝௜
− 𝑌൰

ଶ
ே

௜ୀଵ

− 𝑛൫𝑌෠௉௉ௌ − 𝑌൯
ଶ

൩ 

𝑛(𝑛 − 1)𝐸ൣ𝑣൫𝑌෠௉௉ௌ൯൧ = 𝐸 ൥෍ 𝑡௜ ൬
𝑦௜

𝑝௜
− 𝑌൰

ଶ
ே

௜ୀଵ

− 𝑛𝑉൫𝑌෠௉௉ௌ൯൩ 

ቂ∵ 𝐸൫𝑌෠௉௉ௌ − 𝑌൯
ଶ

= 𝑉൫𝑌෠௉௉ௌ൯ቃ 

Since 𝐸ൣ𝑌෠௉௉ௌ − 𝑌൧
ଶ

= 𝑉൫𝑌෠௉௉ௌ൯ and 𝐸(𝑡௜) = 𝑛𝑝௜~𝐵(0,1) = 𝑛𝑝 

𝑛(𝑛 − 1)𝐸ൣ𝑣൫𝑌෠௉௉ௌ൯൧ = 𝑛 ෍ 𝑝௜ ൬
𝑦௜

𝑝௜
− 𝑌൰

ଶ
ே

௜ୀଵ

− 𝑛𝑉൫𝑌෠௉௉ௌ൯ 

𝑛(𝑛 − 1)𝐸ൣ𝑣൫𝑌෠௉௉ௌ൯൧ = 𝑛. 𝑛𝑉൫𝑌෠௉௉ௌ൯ − 𝑛𝑉൫𝑌෠௉௉ௌ൯              [from theorem-5.3.1] 

𝑛(𝑛 − 1)𝐸ൣ𝑣൫𝑌෠௉௉ௌ൯൧ = 𝑛ଶ𝑉൫𝑌෠௉௉ௌ൯ − 𝑛𝑉൫𝑌෠௉௉ௌ൯ 

𝑛(𝑛 − 1)𝐸ൣ𝑣൫𝑌෠௉௉ௌ൯൧ = 𝑛(𝑛 − 1)𝑉൫𝑌෠௉௉ௌ൯ 

∴ 𝑣൫𝑌෠௉௉ௌ൯ is an unbiased estimate of 𝑉൫𝑌෠௉௉ௌ൯ 

∴ 𝐸ൣ𝑣൫𝑌෠௉௉ௌ൯൧ = 𝑉൫𝑌෠௉௉ௌ൯ 

∴ 𝑣൫𝑌෠௉௉ௌ൯ =
1

𝑛(𝑛 − 1)
෍ ൬

𝑦௜

𝑝௜
− 𝑌෠௉௉ௌ൰

ଶ௡

௜ୀଵ
 

Corollary: An unbiased estimator 𝑜𝑓 𝑣ቀ𝑌ത෠௉௉ௌቁ is given by 

𝑣ቀ𝑌ത෠௉௉ௌቁ =
1

𝑁ଶ
𝑣൫𝑌෠௉௉ௌ൯ 

=
1

𝑁ଶ
∙

1

𝑛(𝑛 − 1)
෍ ൬

𝑦௜

𝑝௜
− 𝑌෠௉௉ௌ൰

ଶ
௡

௜ୀଵ
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=
1

𝑁ଶ

1

𝑛(𝑛 − 1)
൥෍ ൬

𝑦௜

𝑝௜
൰

ଶ

− 𝑛𝑌෠௉௉ௌ
ଶ

௡

௜ୀଵ

൩ 

𝑣ቀ𝑌ത෠௉௉ௌቁ =
1

𝑛(𝑛 − 1)
෍ ൤

𝑦௜

𝑁𝑝௜
− 𝑌ത෠௉௉ௌ൨

ଶ
௡

௜ୀଵ

[∵ 𝐹𝑟𝑜𝑚 𝑇ℎ − 5.3.2] 

 

PPS SAMPLING WITHOUT REPLACEMENT: 
 

         In general of the sampling scheme is to select a PPS sample of size unity and remove 
the selected unit from the population. From the remaining units, another PPS sample of size 
one is taken as before and the selected unit removed from the population. This process is 
repeated until, ‘n’ selections are made. 
         Suppose n, units are selected one by one, with Probability proportional to size measure 
𝑥, at each draw, without replacing the units selected in the previous draws. The Probability of 
selection at the first draw for the 𝑗௧௛ unit is given by  

𝑝௝ =
𝑋௝

𝑋
ൗ , 𝑗 = 1,2, … , 𝑁,  where X=∑ 𝑋௝

ே
௝ୀଵ  

                    Similarly, the Probability that the ith unit is selected at 2nd draw is given by  
௣೔

௝
=

௣೔

൫ଵି௣ೕ൯
, 𝑖 ≠ 𝑗 , and so on. 

       This set up of Sampling comprises an ordered set of Sample values (𝑦ଵ, 𝑦ଶ, … , 𝑦௡) with 
Probabilities  (𝑝ଵ, 𝑝ଶ, … , 𝑝௡) 
 

Examples: In a village, there are 8 orchards (garden tree fruits) with 50,30,25,40,26,44,20 
and 35 trees, respectively . Select a sample of 2 orchards with Probability proportional to the 
number of  trees in the orchard and WOR. 
 

Sol: By using Lahiri’s method of selection 

S.No of 
house 

holdings 

Orchard 
number 

1 2 3 4 5 6 7 8 

Size(𝑋௜) Number 
of trees 

50 30 25 40 26 44 20 35 

i. For selecting a pair of random no’s(𝑖, 𝑗), (𝑖 ≤ 8, 𝑗 ≤ 50), using the random table. The 

random pair is (5,17). Here (5,17)- 5th orchard is selected in the sample  

ii. For selecting this orchard after deleting of 5th orchard. 

S. No of 
house 

holdings 

Orchard 
number 

1 2 3 4 5 6 7 

Size(𝑋௜) Number 
of trees 

50 30 25 40 26 46 35 

As a pair of random no’s(𝑖, 𝑗)/(𝑖 ≤ 7, 𝑗 ≤ 50) then using random no’s the selected pair is 
(6,18). Here (6,18)-6th orchard is selected in the sample. Thus, the sample selected consists of 
the units at serial no’s 5 and 7 of the original list with the no. of trees being 26&20, 
respectively. 
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In WOR PPS has two methods: 
i. Narains scheme of sample selection. 

ii. Sen-Midzuno method. 
i. Narain’s scheme of sample selection: This scheme was introduced by Narain’s 

(1951). The scheme consists of constructing revised probabilities of selection 
𝑝௜

ᇱ(𝑖 = 1,2, … , 𝑁) such that the inclusion probabilities 𝜋௜ are proportional to the 
original probabilities of selection 𝑝௜(𝑖 = 1,2, … , 𝑁) and sampling is done without 
replacement. 
Here the inclusion probability’s 𝜋௜ are given by  𝜋௜ = 𝑛𝑝௜, 𝑖 = 1,2, … , 𝑁. 

       The probability selection of second draw is 𝑝௜
ᇱ  is the similar to 1st draw. Let us consider 

the simple case N=4 and n=2. The problem is to evaluate 𝜋௜௝ given 𝑝௜(𝑖, 𝑗 = 1,2,3,4). The 

relationship ∑ 𝜋௜௝௝ஷ௜ = 𝜋௜ provides a system of four linear equations with size unknowns. For 

this problem choose the values of two arbitrary parameters that restriction to positive values. 
The computations become tedious for n greater than 2. 

ii. Sen –Midzuno Method: This method was suggested by midzuo (1952) and 
independently by Sen (1952). It consists in selecting the first unit with PPS and the 
remaining (n-1) units from (N-1) units of the population by SRSING WOR. 

 In this procedure, the inclusion probability’s for individual and pairwise units are given 
by 

                                  𝜋௜ = 𝑝௜ + (1 − 𝑝௜)(
௡ିଵ

ேିଵ
) for 𝑖 = 1,2, … , 𝑁. 

= [(𝑁 − 1)𝑝௜ + 𝑛 − 1 − 𝑛𝑝௜ + 𝑝௜]
1

(𝑁 − 1)
 

= [𝑁𝑝௜ − 𝑝௜ + 𝑛 − 1 − 𝑛𝑝௜ + 𝑝௜]
1

(𝑁 − 1)
 

                                        =
(𝑁 − 𝑛)

(𝑁 − 1)
𝑝௜ + (

𝑛 − 1

𝑁 − 1
) 

And 𝜋௜௝ = 𝑝௜ ቀ
௡ିଵ

ேିଵ
ቁ + 𝑝௝ ቀ

௡ିଵ

ேିଵ
ቁ + ൫1 − 𝑝௜ − 𝑝௝൯

(௡ିଵ)(௡ିଶ)

(ேିଵ)(ேିଶ)
, 𝑓𝑜𝑟 𝑖 ≠ 𝑗 = 1,2, … , 𝑁 

=
(𝑛 − 1)

(𝑁 − 2)
ቈ𝑝௜

(𝑁 − 2)

(𝑁 − 1)
+

𝑝௝(𝑁 − 2)

(𝑁 − 1)
+ ൫1 − 𝑝௜ − 𝑝௝൯

(𝑛 − 2)

(𝑁 − 1)
቉ 

=
(𝑛 − 1)

(𝑁 − 2)
ቈ
(𝑁 − 2)

(𝑁 − 1)
൫𝑝௜ + 𝑝௝൯ + ൫1 − 𝑝௜ − 𝑝௝൯

(𝑛 − 2)

(𝑁 − 1)
቉ 

=
(𝑛 − 1)

(𝑁 − 2)
൤
𝑁𝑝௜ + 𝑁𝑝௝ − 2𝑝௜ − 2𝑝௝ + 𝑛 − 𝑛𝑝௜ − 𝑛𝑝௝ − 2 + 2𝑝௜ + 2𝑝௝

(𝑁 − 1)
൨ 

=
(𝑛 − 1)

(𝑁 − 2)
ቈ
(𝑁 − 𝑛)𝑝௜ + (𝑁 − 𝑛)𝑝௝ + (𝑛 − 2)

(𝑁 − 1)
቉ 

=
(𝑛 − 1)

(𝑁 − 2)
ቈ
(𝑁 − 𝑛)

(𝑁 − 1)
൫𝑝௜ + 𝑝௝൯ +

(𝑛 − 2)

(𝑁 − 1)
቉ 

   By extension of the above argument, we can have 𝑦௜ , 𝑦௝ , … , 𝑦௤ , a sample of n-units. 

The Probability of including these n-units in the sample is given by  

𝜋௜௝…௤ =
ଵ

ቀ
ேିଵ
௡ିଵ

ቁ
൫𝑝௜ + 𝑝௝ + ⋯ + 𝑝௤൯. 
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6.6  SUMMARY AND CONCLUSION:  
 

 Reviewed key concepts of optimum cluster size and PPS sampling 

 Highlighted procedures for selecting samples in PPS 

 Compared with and without replacement methods 

 Discussed estimators and their variances 

 Emphasized practical application in surveys with cost constraints and unequal unit 

sizes. 

 

6.7  KEY WORDS: 
 

 Cluster Sampling – A sampling technique where the population is divided into 
groups (clusters), and a sample of clusters is selected to represent the population. 

 Optimum Cluster Size – The ideal number of elements in a cluster that minimizes 
the total survey cost for a fixed budget while maintaining acceptable precision. 

 Fixed Cost Sampling – Sampling design that considers a budget constraint where the 
total cost of sampling cannot exceed a given limit. 

 Intra-cluster Correlation – The similarity among units within a cluster, which 
affects the efficiency of cluster sampling. 

 Probability Proportional to Size (PPS) – A sampling method where the selection 
probability of each unit is proportional to a known size measure (e.g., population, 
area, revenue). 

 PPS With Replacement (PPSWR) – A method in which units can be selected 
multiple times during sampling, allowing for simple estimation formulas. 

 PPS Without Replacement (PPSWOR) – A sampling approach in which each unit 
is selected only once, requiring more complex estimation techniques. 

 Cumulative Total Method – A technique used in PPS sampling where cumulative 
sizes are used to facilitate the selection of units. 

 Lahiri’s Method – A method for PPS sampling that involves random selection of a 
unit and acceptance based on a probability condition. 

 Systematic PPS Sampling – A method where a random start is chosen, followed by 
systematic steps using size measures to select units. 

 Horvitz-Thompson Estimator – An unbiased estimator used in unequal probability 
sampling, especially in PPSWR. 

 Estimator of Population Total – A statistical estimate of the total value of a variable 
in the population based on the sample data. 

 Sampling Variance – The variability in an estimator due to the randomness of 
sample selection, particularly important in PPS designs. 

 Efficiency – The degree to which a sampling design reduces variance for a given cost 
or sample size. 
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6.8  SELF-ASSESSMENT QUESTIONS:  
  

1. What are the advantages of using cluster sampling in survey research? 
2. Explain the concept of unequal probability sampling. 
3. What factors influence the determination of an optimum cluster size under a fixed 

cost? 
4. Derive the expression for optimum cluster size given a total cost constraint. 
5. What is the basic principle behind PPS sampling? 
6. Give examples of size measures that can be used in PPS sampling. 
7. Distinguish between PPS sampling with replacement (PPSWR) and without 

replacement (PPSWOR). 
8. What are the advantages and disadvantages of PPSWR compared to PPSWOR? 
9. Explain the cumulative total method for selecting a PPS sample. 
10. Describe Lahiri’s method. What are its limitations? 

 
6.9  SUGGESTED READINGS: 

 
1. Cochran, W.G. (1977) – Sampling Techniques, 3rd Edition, Wiley Eastern. 

Hansen, Hurwitz, and Madow (1953) – Sample Survey Methods and Theory, Wiley. 
2. Des Raj and Chandhok, P. (1998) – Sample Survey Theory, Narosa Publishing House. 

Sarndal, C.E., Swensson, B., and Wretman, J. (1992) – Model Assisted Survey Sampling, 
Springer. 

3. Singh, D. and Chaudhary, F.S. (1986) – Theory and Analysis of Sample Survey Designs, 
New Age International. 

4. Murthy, M.N. (1967) – Sampling Theory and Methods, Statistical Publishing Society. 
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LESSON- 7 

DES RAJ, MURTHY’S ESTIMATOR 
 

OBJECTIVES: 
 
After completing this unit, the learner will be able to: 
 Understand the concept of PPS sampling and its importance in survey sampling when 

the units vary in size. 

 Explain the need for unequal probability sampling and distinguish between sampling 
with and without replacement. 

 Describe and apply Des Raj's estimator for estimating the population total or mean 
using PPS sampling with a sample size of two. 

 Explain Murthy’s estimator as a symmetric alternative to Des Raj’s estimator and 
understand its derivation. 

 Compare the efficiency and bias of Des Raj and Murthy’s estimators under different 
sampling scenarios. 

 Perform calculations and estimations using these estimators through worked examples. 

 Evaluate the applicability of Des Raj and Murthy’s methods in practical survey 
designs. 
 

  STRUCTURE: 
 

   7.1   Introduction 

      7.2   Ordered Estimates  

      7.3   Unordered Estimates  

      7.4   Des Raj’s  & Murthy’s Estimator (Sample Size Two) 

   7.5   Comparison of Estimators 

      7.6   Summary 

      7.7    Key words 

      7.8    Self- Assessment Questions 

      7.9    Suggested Reading  

 
7.1 INTRODUCTION:   

Des Raj and Murthy’s estimators are two well-known unequal probability sampling 
estimators used for estimating the population total or mean when the sample size is two and 
units are selected with probability proportional to size (PPS). 

These estimators were developed as part of efforts to improve estimation efficiency in 
survey sampling, especially when: 
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 The population units have known and unequal sizes (e.g., villages with different 
populations). 

 Simple random sampling may not be efficient due to heterogeneity in sizes. 

7.2  ORDERED ESTIMATES:  
 

To overcome the difficulty of changing expectations with each draw, associate a new 
variate with each draw such that its expectation is equal to the population value of the variate 
under study. Such estimators take into account the order of the draw. They are called the 
ordered estimates. The order of the values obtained at the previous draw will affect the 
unbiasedness of the population mean. 

 

7.3 UNORDERED ESTIMATES: 
  

Corresponding to any ordered estimator, there exist an unordered estimator which does 
not depend on the order in which the units are drawn and has smaller variance than the 
ordered estimator.  Unordered Estimator: In case of sampling WOR from a population of size 
N, there are unordered sample(s) of size n. 
 
7.4  DES RAJ’S  & MURTHY’S ESTIMATOR (SAMPLE SIZE TWO):  
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Murthy’s unordered estimator corresponding to Des Raj’s ordered estimator for the 
sample size 2 

Suppose  & yi jy  are the values of units  & ui ju selected in the First and second draw 

respectively with varying probability and WOR in a sample of size 2 and let P1 & P2 be the 



 

Sampling Theory                                        7.13                  Des Raj & Murthy’s Estimator  

corresponding initial probabilities of selection. So now we have two ordered estimates 
corresponding to the ordered samples S1* and S2* as follows 
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7.5  COMPARISON OF ESTIMATORS: 
 

 Des Raj: Ordered, simpler, useful for small samples, more sensitive to order. 
 Murthy: Unordered, averages over permutations, less variance. 
 Both are unbiased. 
 Murthy’s estimator is generally preferred when computational effort is acceptable. 

 
7.6  SUMMARY: 
 

  For sample size two, both estimators serve specific needs. 

  Des Raj: Efficient for ordered selection in PPS. 

 Murthy: Broader applicability, especially with unordered or complex schemes. 
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 Choosing the right estimator depends on sampling design, order of selection, and 
practical considerations like ease of computation vs. variance reduction. 

 
7.7  KEY WORDS: 
 

 Probability Proportional to Size (PPS) Sampling 

 Estimator 

 Unbiased Estimator 

 Sample Size Two 

 Ordered Estimates 

 Unordered Estimates 

 Des Raj Estimator 

 Murthy Estimator 

 With Replacement (WR) 

 Without Replacement (WOR) 

 Inclusion Probability 

 Joint Inclusion Probability 

 Sampling Design 

 Estimation of Population Total 

 Efficiency of Estimator 

 Variance of Estimator 

 Symmetric Estimator 

 Sequential Selection 

 Permutation of Units 

 Comparison of Estimators 

 
7.8  SELF-ASSESSMENT QUESTIONS:  
 
1. What is the basic idea behind Des Raj’s estimator? 
2. What is the condition under which Murthy’s estimator is preferred over Des Raj’s? 
3. Why are Des Raj’s and Murthy’s estimators specifically useful for sample size two? 
4. How do these estimators account for the unequal probabilities of selection? 
5. Is Des Raj’s estimator unbiased? Justify your answer. 
6. What is the difference between ordered and unordered estimators in PPS sampling? 
7. What does the Murthy estimator attempt to correct compared to Des Raj’s estimator? 
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      7.9  SUGGESTED READINGS: 
 

1. Cochran, W.G. (1977) Sampling Techniques (3rd Edition), Wiley. 
2. Sukhatme, P.V., Sukhatme, B.V., Sukhatme, S., & Asok, C. (1984) Sampling Theory 

of Surveys with Applications, Indian Society of Agricultural Statistics. 
3. Des Raj and Chandhok, P. (1998) Sampling Theory, Narosa Publishing House. 
4. Singh, D. and Chaudhary, F.S. (1986) Theory and Analysis of Sample Survey Designs, 

Wiley Eastern Ltd. 
5. Murthy, M.N. Title: Sampling Theory and Methods, Publisher: Statistical Publishing 

Society 
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LESSON- 8 

HORVITZ THOMPSON ESTIMATOR 
 

OBJECTIVES: 

 

Upon completion of this lesson, learners will be able to: 

 Understand the theory and application of the Horvitz-Thomson estimator in the context of 
unequal probability sampling. 

 Explain Grundy's estimator, including its assumptions, derivation, and comparison with 
the Horvitz-Thomson estimator. 

 Describe the Midzuno-Sen sampling scheme, its selection procedure, and situations where 
it is advantageous. 

 Compute unbiased estimates of population totals or means using these methods. 

 Evaluate the variances of the estimators and understand their relative efficiencies. 

 Apply the estimators to real-world survey sampling problems involving unequal 
probabilities. 

 Compare the estimators through theoretical and numerical illustrations. 
 
STRUCTURE: 
 
8.1    Introduction 

8.2    Orchard estimator  

8.3    Horvitz-Thomson Estimator 

8.4    Grundy's Estimator 

8.5    Yates and Grundy form of Variance 

8.6    Midzuno-Sen Sampling Scheme 

8.7    Comparison of Estimators 

8.8    Summary 

8.9    Keywords 

8.10  Self-Assessment Questions 

8.11  Suggested Readings 

 
8.1  INTRODUCTION:  
 

In survey sampling, particularly in unequal probability sampling, estimating population 
parameters accurately requires specialized techniques. Among the most prominent are the 
Horvitz-Thomson estimator, Grundy’s estimator, and the Midzuno-Sen sampling 
scheme. These methods aim to provide unbiased or nearly unbiased estimates of population 
totals or means, even when selection probabilities differ across units. 
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1. Horvitz-Thomson Estimator (HT Estimator): 
Introduced by Horvitz and Thompson in 1952, this estimator is a design-unbiased 
estimator for the population total. It is applicable under unequal probability sampling 
with or without replacement, where the inclusion probabilities are strictly positive. The 
HT estimator adjusts each sampled unit by the inverse of its inclusion probability, 
making it robust to unequal selection chances. 

2. Grundy’s Estimator: 
An extension of the Horvitz-Thomson approach, Grundy's estimator modifies the 
estimation when second-order inclusion probabilities are known or available. It aims 
to improve efficiency, particularly in complex survey designs. It is generally used for 
variance estimation or improving estimator precision when more information about 
the sampling design is available. 

3. Midzuno-Sen Sampling Scheme: 
Proposed independently by Midzuno (1951) and Sen (1952), this is a probability 
proportional to size (PPS) sampling scheme without replacement. The scheme 
ensures that one unit is selected using PPS, and the rest are selected using simple 
random sampling (SRS) among the remaining units. It maintains unbiasedness while 
simplifying implementation and variance estimation. 

Together, these methods and estimators provide a strong theoretical foundation 
for dealing with practical problems in unequal probability sampling, enabling 
statisticians to make valid inferences from sample data. 

 
8.2 ORCHARD ESTIMATOR:  
 

Daroga Singh  Das (1951) &Des Raj(1956) have proposed estimators which are based 

on the order of units. These estimators do not require calculations. And use of conditional 

Probabilities without calculating 𝜋௜ &𝜋௜௝ generally difficult to compute Sampling schemes. 

            Des-Raj ordered estimator→ depends on conditional Probability. Here, we shall 

consider the estimator proposed by Des-Raj, first for the case when n=2, and then generalize 

the result. 

Go for Horvitz-Thomson estimator. 

 

8.3 DEFINITION OF HORVITZ-THOMSON ESTIMATOR: 
 

Suppose that 𝑦௜ is the value of ith unit with 𝜋௜ the probability of inclusion in the sample. The 

Horvitz-Thomson estimator for the population total “Y” is defined by 𝑌෠ு் = ∑
௬೔

గ೔

ே
௜ୀଵ  . 

Theorem: In PPS Sampling without replacement, 𝑌෠ு் is unbiased and its sampling variance 

is given by  𝑉൫𝑌෠ு்൯ = ∑
(ଵିగ೔)

గ೔
𝑦௜

ଶே
௜ୀଵ + 2 ∑ ∑

൫గ೔ೕିగ೔గೕ൯

గ೔గೕ
𝑦௜𝑦௝

ே
௝வ௜

ே
௜ୀଵ  . 

Let     𝜋௜: Probability that the 𝑖௧௛ unit is included in the Sample. 
                        𝜋௜௝: Probability that  𝑖௧௛and 𝑗௧௛ units are included in the Sample. 

Proof: Let 𝑡௜(𝑖 = 1,2, … , 𝑁) be a random variable that takes the values ‘1’ If the ith unit is 
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drawn and ‘zero’  otherwise. Then 𝑡௜ follows the Binomial distribution for a sample of size 
‘1’ with probability 𝜋௜ . 
     Thus , 𝐸(𝑡௜) = 𝜋௜ and 𝑉(𝑡௜) = 𝜋௜(1 − 𝜋௜) 

       𝑐𝑜𝑣൫𝑡௜, 𝑡௝൯ = 𝐸൫𝑡௜𝑡௝൯ − 𝐸(𝑡௜)𝐸൫𝑡௝൯ 

                         = 𝜋௜௝ − 𝜋௜𝜋௝  

Hence, regarding the 𝑦௜ as fixed and the 𝑡௜ as the r.v’s, 

𝐸൫𝑌෠ு்൯ = 𝐸 ቀ∑
௧೔௬೔

గ೔

ே
௜ୀଵ ቁ = ∑

௬೔

గ೔

ே
௜ୀଵ 𝐸(𝑡௜) = ∑

௬೔

గ೔

ே
௜ୀଵ 𝜋௜=Y. 

∴ 𝑌෠ு்is unbiased estimate of Y. 

𝑉൫𝑌෠ு்൯ = ෍ ൬
𝑦௜

𝜋௜
൰

ଶ
ே

௜ୀଵ

𝑉(𝑡௜) + 2 ෍ ෍
𝑦௜

𝜋௜

ே

௝வ௜

ே

௜ୀଵ

∙
𝑦௝

𝜋௝
𝑐𝑜𝑣൫𝑡௜, 𝑡௝൯ 

= ෍
𝑦௜

ଶ

𝜋௜
ଶ

ே

௜ୀଵ

𝜋௜(1 − 𝜋௜) + 2 ෍ ෍
𝑦௜

𝜋௜

ே

௝வ௜

ே

௜ୀଵ

∙
𝑦௝

𝜋௝
൫𝜋௜௝ − 𝜋௜𝜋௝൯ 

∴ 𝑉൫𝑌෠ு்൯ = ∑
(ଵିగ೔)

గ೔
𝑦௜

ଶ + 2 ∑ ∑
൫గ೔ೕିగ೔గೕ൯

గ೔గೕ

ே
௝வ௜

ே
௜ୀଵ

ே
௜ୀଵ 𝑦௜𝑦௝ . 

Corollary: An unbiased sample estimator of 𝑉൫𝑌෠ு்൯ is given by      

∴ 𝑣൫𝑌෠ு்൯ = ෍
(1 − 𝜋௜)

𝜋௜
ଶ 𝑦௜

ଶ + 2 ෍ ෍
൫𝜋௜௝ − 𝜋௜𝜋௝൯

𝜋௜𝜋௝

௡

௝வ௜

௡

௜ୀଵ

௡

௜ୀଵ

𝑦௜

𝜋௜

𝑦௝

𝜋௝
 

 
Provided that none of the 𝜋௜௝ in the population vanishes. 

 
8.4  GRUNDY'S ESTIMATOR:  
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8.5 YATES ESTIMATOR: 
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8.6  MIDZUNO-SEN SAMPLING SCHEME: 
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8.7  COMPARISON OF ESTIMATORS: 
 

 HT Estimator is preferred for general-purpose use due to its simplicity and 

unbiasedness. 

 Grundy’s formula is essential when precision (variance) needs to be estimated 

accurately. 

 Midzuno-Sen offers a practical alternative when unequal probability sampling is 

required,    especially in field surveys. 

 Orchard’s Estimator has limited use today but is conceptually significant in 

understanding     early developments in sampling theory. 

 
8.8  SUMMARY: 
 

 Estimators like Horvitz-Thomson and its variants are crucial for unbiased estimation in 

unequal probability sampling. 

 Each estimator has trade-offs between simplicity, variance, and implementation. 

 Midzuno-Sen offers a practical compromise with good properties in many applications. 

 The choice of estimator should consider the sampling design, availability of inclusion 

probabilities, and computational feasibility. 
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8.9  KEY WORDS: 
 

 Unbiased Estimator 

 Inclusion Probability 

 Horvitz-Thomson Estimator 

 Orchard Estimator 

 Grundy’s Estimator 

 Yates-Grundy Variance 

 Midzuno-Sen Scheme 

 PPS Sampling 

 Joint Inclusion Probability 

 Variance Estimation 

 

8.10  SELF-ASSESSMENT QUESTIONS:  
 

1. What is the need for unbiased estimation in survey sampling? 
2. Define the concept of an estimator and the importance of its variance. 
3. State the formula for the Horvitz-Thomson (HT) estimator. 
4. Under what sampling scheme is the HT estimator unbiased? 
5. What is the main advantage of using the HT estimator in unequal probability 

sampling? 
6. Define Horvitz – Thompson estimator of the population mean and derive the variance of 

this estimator. 
7. Explain the concept of Yates and Grundy Form of Variance. 
8. What is the Yates and Grundy form of variance? 
9. How does it improve the estimation of variance under unequal probability sampling 

Write down the Yates-Grundy variance formula and explain the terms involved. 
10. Describe the steps involved in the Midzuno-Sen sampling scheme. 
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  LESSON- 9  
TWO STAGE SAMPLING 

 
OBJECTIVES: 
 
 

After completing this lesson, learners will be able to: 

 Understand the Concept of Two-Stage Sampling: Comprehend the rationale behind 
using two-stage sampling in large-scale surveys. 

 Describe the Structure of Two-Stage Sampling Design:Define Primary Sampling 
Units (PSUs) and Secondary Sampling Units (SSUs). 

 Estimate the Population Mean:Derive an unbiased estimator of the population mean 
using two-stage sampling with equal SSUs per PSU. 

 Interpret the formula in terms of sample means at both stages. 

 Compute the Variance of the Estimator:Derive the expression for the variance of 
the population mean estimator under this sampling scheme. 

 Understand the contribution of variation at both stages (between PSUs and within 
PSUs). 

 Estimate the Variance from Sample Data: Learn the methods for estimating the 
variance of the sample mean from actual survey data. 

 Construct confidence intervals for the population mean using estimated variance. 

 Apply Concepts to Real-world Problems: Use the discussed methods to analyze 
data from complex surveys. 

 Evaluate the efficiency and practicality of two-stage sampling in field applications. 

 Compare with Other Sampling Methods: Understand when two-stage sampling is 
preferable over stratified or simple random sampling. 

 
STRUCTURE: 
 

9.1   Introduction 

9.2   Two Stage Sampling (OR) Sub Sampling with units of Equal Size 

9.3   Applications 

9.4   Advantages of Two Stage Sampling 

9.5   Concept of Two Stage Sampling Population Mean 

9.6   Estimation of Variance 

9.7   Summary 

9.8   Keywords 

9.9   Self-Assessment Questions 

9.10  Suggested Readings 
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9.1  INTRODUCTION:  
 

           In cluster sampling, all the elements in the selected clusters are surveyed. Moreover, 
the efficiency in cluster sampling depends on the size of the cluster. As the size increases, the 
efficiency decreases. It suggests that higher precision can be attained by distributing a given 
number of elements over a large number of clusters and then by taking a small number of 
clusters and enumerating all elements within them. This is achieved in sub sampling. 

We have, seen that the larger the cluster, the less efficient it will be. It is thus, logical to 
expect that for a given number of elements, greater precision will be attained by distributing 
them over a large number of clusters andthen sampling a larger number of elements from 
each of them or completely enumerating them. We can eliminate this disadvantage through 
sub-sampling or two stage sampling. 

The procedure of first selecting clusters and then choosing specified number of 
elements from each selected cluster is known as sub-sampling or two-stage sampling. The 
clusters which form the units of sampling at the first stage are called the first stage units and 
the elements groups of elementswithin clusters which form the units of sampling at the 
second stage arecalled sub-units or second stage units. The procedure can be easily 
generalized to three or more stages and is termed as multi-stage sampling. 
 

For example, in a crop survey  
- villages are the first stage units. 

      - fields within the villages are the second stage units and  
      - plots within the fields are the third stage units. 
In another example, to obtain a sample of fishes from a commercial fishery 
     - first take a sample of boats. 
     - then take a sample of fishes from each selected boat. 
 
9.2  TWO STAGE SAMPLING (OR) SUB SAMPLING WITH UNITS OF EQUAL   
       SIZE:  
         
        Two stage sampling is also called as sub-sampling  elements Mn  
           NM 

   
 

  nM 
 
 
 
 
Description:  
           Suppose that each unit in the population can be divided into a number of smaller units 
or elements. A sample of n-units as being selected. If elements within a selected unit give 
similar results, it seems uneconomical to measure them all. A common practice is to select 
and measure a sample of the elements in any chosen unit. This technique is called                
sub-sampling, since the unit is not measured completely but it is itself a sample. Another 
name due to Mahalanobis is two-stage sampling, because the sample is taken in two steps. 

M 

M 
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The first is to select a sample of units often called primary units (or first stage units) and the 
second is to select a sample of elements (or second stage units) from each chosen primary 
unit. 
 
9.3  APPLICATIONS: 
 
1. Whenever any process involves chemical, physical or biological tests that can be 

performed on a small amount of material, it is likely to be drawn as a sub sample from a 
larger amount which is itself a sample. 

2. In crop surveys for estimating the yield of a crop in a district, villages may be considered 
as first stage units and the crop fields of fixed size are the 2nd stage units of sampling. 

Note: Two-stage sampling can be expected to be  
1) Less efficient than single stage random sampling and more efficient than cluster 

sampling from the sampling variability point of view. 
2) More efficient than single stage random sampling and less efficient than cluster sampling 

from the cost and operational point of view. 
3) The main advantage of this sampling, procedure is that at first stage, the sampling frame 

of first stage units (f s u) is required can be prepared easily. At the 2nd stage, the sampling 
frame of the second stage units (s s u) is required only for the selected first stage units. 
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9.4  ADVANTAGES OF TWO STAGE SAMPLING:  
 

        The principle advantage of two stage sampling is that it is more flexible than the one-stage 

sampling. It reduces to one stage sampling when m M  but unless this is the best choice of m , we 

have the opportunity of taking some smaller value that appears more efficient. As usual, this choice 

reduces to a balance between statistical precision and cost. When units of the first stage agree very 

closely, then consideration of precision suggests a small value of m . On the other hand, it is 

sometimes as cheap to measure the whole of a unit as to a sample. For example, when the unit is a 

household and a single respondent can give as accurate data as all the members of the household. 

 
Notations:  

ij
y  value obtained for j

th
 element in the i

th
 primary unit, 

M,,2,1j

N,,2,1i




 

iyY
th

M

1j
iji




 cluster total. 

Y Population total 
 


N

1i

M

1j
ij

N

1i
i yY  

iY
th

i
 cluster mean

MM

M

1j
ij

i

y
Y 

  

Y Population mean for element
NM

Y

NMN

N

1i

M

1j
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N

1i
i

yY



   

𝑦నഥ = ෍
𝑦௜௝

𝑚

௠

௝ୀଵ

= 𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 𝑝𝑒𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑖௧௛ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 

n m

iji i 1 j 1i 1y
n nm

yy
n

   


Over all sample mean for element 

∴ yധ = 𝑌ധ෠           

Ŷ NM NM yY  . 

y  is an estimate of Y (population mean for element) and Ŷ  is an estimate of Y(Population 
total) 

Both the estimates Ŷ  and 𝑌ധ෠  are of the farm 

           )1(y yyy
'

n

'

2

'

1
  

Where y
'

i
 is an estimate made from the sub sample drawn from the i

th
 primary unit. 

Let ),2(iE
y

Y
'

i
'

i















  where the symbol  iE   denotes a mean taken over all sub 



Sampling Theory                                             9.5                                  Two Stage Sampling 

 

samples drawn from the i
th

 primary unit. 

If these means were know, we could construct the estimate 

          )3(
n

1i

'

i

'

n

'

2

'

1

'

YYYYŶ  


 

Let i
 denote the probability that the i

th
 primary unit is drawn into the sample. 

 
9.5  CONCEPT OF TWO STAGE SAMPLING POPULATION MEAN: 
 
THEOREM-1: If the primary unit are drawn without replacement and sub-samples are chosen 

independently in different units, y
'
 is an unbiased estimate of 




N

1i

'

ii

'

YY  with variance 

of y
'
 is 


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
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
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


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i
'
i

E Yy
2

2

2 i
 is the variance of y

'
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in repeated sub sampling from the i
th

 primary unit.  

Let 




y

'

cv  be a copy of 




Ŷ

'
v , obtained by replacing Y

'

i
 by y

'

i
 , whenever Y

'

i
 appears. 

THEOREM-2: Under the conditions of th-10.1, an unbiased estimate of 




y

'
V is 

















n
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2

i2i

'

c

'

ˆyy vv  , where ̂ 2

i2
 is any unbiased sample estimate of .

2

i2  

 
THEOREM-3: If the n-units and the m-sub units from each chosen unit are selected by simple 

random sampling random sampling, y  is an unbiased estimate of Y  with variance of y  is 

 
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





 

   

where 
 





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Variance among elements within primary units. 

Proof: In the notation of theorem-10.1;  
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n

y
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'
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i YŶYY 


 N

n
 i

 



Centre for Distance Education                    9.6                      Acharya Nagarjuna University 

From theorem-1[we know that y
'
 is an unbiased estimator of Y

'
] 

          
 
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Since Ŷ
'
 is the mean of the n-values of Yi

, using the result of single stage sampling for 

primary units(i.e., SRSWOR for clusters) we have    
               

                              
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Ŷ
2

1
N

1i

2

'













 




 

 

Also, applying the result of SRSWOR for the element of i
th

 cluster [i.e, first stage unit 

(f s u)] since m-elements are selected out of M from the i
th

 primary unit, 
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Hence, by variance of y  by using equation (1) & (2) we get  
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i. If 
N

n
f 1

  and 
M

m
f 2

  are sampling fractions in the 1st and 2nd stages, a form of the 

result that is easier to remember. 
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   [this is for population mean estimate] 
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22  [ yNMYNMŶ  ][this is for population total estimate] 
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9.6  ESTIMATION OF VARIANCE: 
 

 If the ‘n’ primary unit means Yi
 were known as unbiased estimate of the variance of their 

mean Ŷ
'
 would be    2n
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For theorem-2:  we require also an unbiased estimate of 2
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. Since sub samples are chosen 

by simple random sampling, this is given by  
2 2

2 2i 2i
2 222i

M m
1 (6)

Mˆ f
mn mn
s s 

    , 

where 
 

2

m
2

2i
j 1

m 1

ij i
y y

s






  



 

M

m
f 2

  

THEOREM-4: An unbiased estimate of  yV  is    2 21 21
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Proof: By theorem-10.2; an unbiased estimate of  yV  is  yv [from th-10.2] 

           



n

1i

2

i2ic ˆyy vv  

Using equations (5) & (6) and 
N

n
i
  

This gives     n
2 21 2

21 2i
i 1

1 11 n
y

n N m
f f

n
v s s



          
 . But 

2
n

2 2i
2

i 1
n

s
s



  

Hence,    2 21 21
1 2

11
y (9)

n mn
f ffv s s


     



 

M

m
,

N

n
ff 21

  

Equation-(9) is used for estimation of the variance of the estimate of the population total   
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Note: If m=M; i.e., f2=1, formula (9) becomes that appropriate to SRS of the units.  
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   2 21 1
1 2

1 1 1
y

n mn
f fv s s

 
   21

1

1
0

n
f

s


 
21
1

1

n
f

s



 

 
9.7  SUMMARY AND CONCLUSION: 
  
 Two-stage sampling is an efficient method for large-scale population surveys, 

especially when complete listings are impractical. 
 It provides flexibility, cost-effectiveness, and robustness in estimation. 
 The method retains the unbiasedness of estimators while allowing a practical sampling 

framework. 
 Variance estimation is straightforward and enables proper inference with confidence 

intervals. 
 

9.8  KEY WORDS: 
  

 Two-stage sampling 

 Primary Sampling Units (PSUs) 

 Secondary Sampling Units (SSUs) 

 Equal-size sub-sampling 

 Unbiased estimator 

 Between-PSU variance 

 Within-PSU variance 

 Estimation of variance 

 Cost-effective sampling 

 

9.9  SELF-ASSESSMENT QUESTIONS: 

1. Define two-stage sampling. How does it differ from single-stage sampling? 
2. What are the key features of two-stage sampling when secondary units are of equal 

size? 
3. Explain how the population mean is estimated in a two-stage sampling design. 

Provide the formula. 
4. List at least three real-life applications of two-stage sampling. Why is this method 

preferred in such cases? 
5. What are the advantages of using two-stage sampling in large-scale surveys? 
6. State and explain the main theorem related to the variance of the two-stage sampling 

estimator. 
7. Derive the expression for the variance of the estimated population mean in a two-

stage sampling with equal-sized SSUs. 
8. How is the variance of the sample mean estimated from two-stage sampling data? 

Provide the estimation formula. 
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9. In two-stage sampling, what do the terms ‘between PSU variance’ and ‘within PSU 
variance’ refer to? Why are both important? 

10. What assumptions are necessary for the sample mean to be an unbiased estimator of 
the population mean in two-stage sampling? 
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  LESSON -10  
DOUBLE SAMPLING (TWO PHASE SAMPLING) 
 
OBJECTIVES: 
 
 

After completing this lesson, learners will be able to: 
 Understand the Concept of Double Sampling: Define double sampling (also known as 

two-phase sampling). Distinguish between single-phase and double-phase sampling 
methods. 

 Apply Double Sampling in Stratified Populations: Explain the role of stratification in 
improving the efficiency of estimators. Illustrate how double sampling can aid in forming 
effective strata when stratification information is not available initially. 

 Estimate the Population Mean Using Double Sampling: Derive the estimator for the 
population mean in double sampling. Compute the variance of the estimated mean under 
double sampling. 

 Evaluate and Interpret the Variance: Derive and interpret the expression for the 
variance of the estimator in two-phase sampling. Compare the variance of double 
sampling estimators with single-phase estimators to assess efficiency. 

 Understand and Apply Optimum Allocation in Double Sampling: Learn the concept 
of optimum allocation for sample sizes in both phases. Derive the condition for optimum 
allocation that minimizes the variance for a fixed cost or minimizes cost for a fixed 
variance. 

 Develop Practical Understanding: Apply double sampling methods to real-life 
sampling problems. Understand the trade-offs between cost and precision in survey 
design using two-phase sampling. 

 Use Double Sampling for Cost-Effective Data Collection: Design a double sampling 
scheme where preliminary data collection is inexpensive and followed by a more detailed 
second phase. 

 
STRUCTURE: 
 
 

10.1     Introduction 

10.2     Concept of Double sampling 

10.3     Double sampling for stratification 

10.4     Estimation of variance for double sampling 

10.5     Applications of Double Sampling 

10.6     Optimum allocation in Double Sampling 

10.7     Summary 

10.8     Keywords   

10.9     Self-Assessment Questions 

10.10 Suggested Readings 
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10.1 INTRODUCTION: 
 

Double sampling, also known as two-phase sampling, is a statistical technique where 
data is collected in two stages to improve accuracy and efficiency. In the first stage, a large 
sample is taken to gather preliminary or inexpensive information. In the second stage, a 
smaller subset of this sample is selected for more detailed and often more costly 
measurements. This method is particularly useful in cases where certain measurements are 
expensive, time-consuming, or difficult to obtain for an entire population. 

 
The main advantage of double sampling is that it allows researchers to make better 

estimates while minimizing costs. By using a large initial sample to gain general insights and 
a smaller second sample for precise measurements, it optimizes resource allocation. This 
technique is widely used in fields such as survey research, quality control, and environmental 
studies. For example, in quality control, a company may conduct a quick inspection of many 
products before selecting a smaller subset for rigorous testing. Similarly, in surveys, a broad 
preliminary study might be conducted to identify key characteristics before conducting in-
depth interviews with a smaller group. 
 
10.2 CONCEPT OF DOUBLE SAMPLING:  
 
          Two-Phase Sampling is also called Double sampling. In Two-phase sampling the study 
variables are two. They are X and Y. 
 X - auxiliary variables or helping variable 
 Y - study variable 
 X - variate helps in estimating better study variate. 
In two- stage sampling we are having only one variate Y.  

In each unit we find  ,i ix y  

                               N     
 

'n  
                                                                                                                             
          
                                                                                ix                                  n         

 
 iy  

                                                       Weight is xi
, Area is y

i
 

 

Example: y
i
 - is the household’s income; xi

 is number of households. Collection of information 

xi
 is less cost, less time. In the collection of information Yi

 is more cost and more time will be 

taken. 
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                                  N                                         3-  Phase Sampling 
                               n  
                                                                       n               n        n'  
                                                n 
                                                             

                                                              x1
             x2

          y
i
    

   
           The method of selection consists in selecting a sample of units in the first Phase for collecting 
data on some, suitable and the auxiliary variables and then selecting a sub sample of these units for 
the main survey by utilizing the auxiliary information obtained in the first phase for arrangement, 
stratification and selection or for estimation. This procedure is termed as two-phase sampling or 
double sampling. 
          
          As an illustration, the use of double sampling may be given by considering the question of 
estimating the total consuming expenditure in a town through a sample survey, when only just a list of 
all households in the town is available, without any other particulars about the households. One 
procedure is to select a sample of households and collect data on consumer expenditure but such a 
procedure may require a rather large sample and hence the cost involved may be considerable, if there 
is a large variation among the households. An alternative procedure in such a case, which is likely to 
be more economical would be to collect data on some simple characteristics related to consumer 
expenditure such as household size, means of livelihood, etc. For a sample of households selected in 
the first phase and to use this information for arrangement, stratification and selection of the 2nd phase 
sample of household for the collection of data on consumer expenditure. The farmer is uni-phase 
sampling whereas, the latter method is two-phase sampling. It may be noted that different sampling 
procedures may be used at the different phases depending on the information available for the sample 
units. 

 
10.3  DOUBLE SAMPLING FOR STRATIFICATION: 
 
       The population is to be stratified into a number of classes according to the values of ‘xi’. 
The first sample is a SRS of size ‘n’. Let 

N
N h

hW proportion of population falling into 

stratum h and 


n
n

'

'

h
hw

proportion of 1st sample falling into stratum h, then wh is an 

estimate of Wh, The second sample is a stratified random sample of size n(generally n<n
'
) in 

which y
i
 is measured :nh

 units are drawn from stratum h. The second sample is often a 

subsample from the 1st sample but it may be drawn independently if this is more convenient. 

The cost of the two samples is assumed to be CnC
'

n

'

n
nC  ; where Cn

 is usually large in 

relation toC
'

n
. 

The problem is to chose n
'
 and the nh

(and consequently n) to minimize the variance of the 

estimate for a given cost. We must then verify whether the minimum variance is smaller than 

that can be attained by a SRS in which y
i
 alone is measured. 

The first step is to set up the estimate and determine its variance. The population mean is 
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



L

1h
hhYWY .As an estimate we use 

L

hst hh 1
y yw



 . Whenever a new sample is drawn 

this implies a fresh drawing of both 1st and 2nd samples. Thus, the 
hw  and the sample means 

y
h

 are both random variables. 

Q). Define an estimate of population mean  Y  in double sampling  y
h

 and show that it is 

unbiased. 
 

10.4  ESTIMATION OF VARIANCE FOR DOUBLE SAMPLING: 
 

Theorem-1: The estimate y
st

is unbiased estimate of Y  

Proof: Average first over samples in which the
hw  are fixed. Since y

h
 is the mean of a SRS 

from the stratum   Yy hh
E  , but when the average is taken over different selections of the 

first sample  h h
E Ww  . Since the first sample is also a SRS, 

Hence,    L

h hst hh 1

E E Ey yw w


  
   

  
  

 h hh 1

E E y
L

w


 
  

 


L

h h
h 1

E Yw


 
  

 
 Y

L

1h
hh YW 



. 

y
st

 is an unbiased estimate of Y . 

Theorem-2: If the first sample is random and of sizen
'
, the second sample is(drawn) a 

random sub-sample of the first, of size nn
'

hhh  , where 0 1
n   and  h

 are fixed then, 

 
2

L
2 h h

' '
st h 1 h

1 1 1
V 1

N
W Sy S

n n 

   
           

 , where s
2
 is the population variance. 

Proof: Suppose that the y
hi

were measured on all n
'

h
 first sample units in stratum h, not just 

on the subsample ofnh
. Then, since 

' L '
h
'h h

hh 1

'; yn
yn

w w


  is the mean of a SRS of size n, 


























N

11
)1(

N

nN
V

n
S

n
Sy '

2

'

2
'

 --------(1) 

But we know that 








 

L

1h

'

hhh

'

h

L

1h
h

L

1h hhst
yyyyy www  

  )2(V'yVV
L

1h

'

hhhst
yyy 














 





 


w  
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Hence, for fixed wh
,





























  

 nnSyyV '

hh

L

1h

2

h

2

h

L

1h

'

hhh2

11
ww  

 























 yyyynnSy

'

hh

'

hh
hh

2

hh

11
V  

[Where S
2

h
 is the variance of finite population consisting of combined domains] 



















 nn
nS

hh

h
L

1h

2

hh

11

nw nnn
nnS

h

hh

hh
L

1h

2

hh

n   
 












 





w  














 



1
n n

nS
h

h
L

1h

2

hhw )5(1
1

n
h

L

1h

2

hhS 














 
w  

         Where 
n
n

h

h
h 
  and since 


















 L

1h
h

L

1h
h2 WVE w . 

Averaging over the distribution of wh
, obtained b repeated selections of the first sample, we 

have from equations (1),(2), and(5)   

 
2

L
2 h h

st h 1 h

1 1 1
V 1 (6)

n N n
W Sy S 

              
  

Theorem-3:If the second sample is selected independently of the first sample then(or if the 

values of nh
 do not depend on the wh

) then 

       L

L h
2 2h hh h 1
h hst h 1 h

g1 1 h
V (1)

n n

YW Yg W W fy W Sn




 
             

  


  

Where   1NnNg   and 
'h h

h h hh h
h

; ;
N

Nn Wf n nN     

Proof: Average first over samples in which wh
 are fixed over these samples. The mean of 

y
st

 is 


L

1h
hh Yw so that there is a bias of amount  YW h

L

1h
hh



w . 

The conditional variance of y
st

 is given by (Th.5.3)    
2 2

L
h h

hst h 1 h

V 1Sy fn
w



 

h hst h st hh h

Y stratified, but Y in double samplingy y y yW w
 

      
 

   

Hence the mean square error is  

 bias
2

VarianceMSE  . Difference is biased. 
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      




  
















YWn

SfYy h

L

1h
hh

1

st
E

2
L

1h h

2

hh

2

h
h

2

www
 

 Taking expectation on both sides 

        )2(h

L

1h
hhEE

1

st
EE YWn

SfYy
2

2

h

L

1h h

2

hh
h

2























 




 


www  

Now, average when wh
 vary 

    
 1Nn

nN1
V WW hh

h 


w  

Substituting g in the above equation 

   
)3(

n

g1
V WW hh

h





w  

Now,       www h

22

h
VhE E   

   2 2 hh
h h

1
E (4)

n

g W W
Ww


  



   Whh
E w  

Also,       h h j j h j h j

g
E cov , ; h j (5)

nW W W Ww w w w
        

 

Since,        aaaaaa jijiji
EE,E,cov    






 





N

n
1

1NN

n
 

   2

i i i i i ji j
i i j 1

V V 2 cov ,ua u a u ua a


 
  

 
    

Now, considering Yh
 as a constant in equation (2), we write 

     wwww jhjhh

L

1h

2

h

2

,cov2V
L

1h
hhhE yYYYW 



  

 

 

 2 hh
h jh h j

h

1 g
2

n n

'W W
W WY Y Y

g        
   

 2

h h h jh h j
h

g
1 2

n W W W WY Y Y
  

     
   

2 22

h h h jh h h j

g
2

n W W W WY Y Y Y
                        E

    
2 2

2

h h

L Lg
h h hh hnh 1 h 1

W W WY Y Yw
 
   
    

   

 


2 2 2 2

1 2 1 2 1 3

2

.....i

                    2

2 2i

i i j

a a a a a a a a

a a a

         


  


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2 2

h h

g

n W Y Y
      

2 2 2

h h

g
2

n W Y Y Y
         

 
L2 2

h h hh h
h 1

g
2 Y

n W W WY Y Y


  
     

    

 2L

h 1

g
(6)hn

YW Yh



 

   

      Substituting equation (4) and (6) in equation (2) we get the result 

       2L
2 2h hh
h hst h 1 1h

1 1 g
V (7)

hn n
W

g W W f Yy W s Yn

L

h
h 

               


   

 
10.5 APPLICATIONS OF DOUBLE SAMPLING (TWO-PHASE  SAMPLING): 
 
Double sampling, also known as two-phase sampling, is widely used in survey sampling, 
especially when some auxiliary information is available or easily collectible for a large 
sample, while the main variable of interest is expensive or difficult to measure. Here are the 
main applications: 
 

1. Stratification When Strata Are Unknown 
 Often used when strata (subgroups within a population) are not known in advance. 
 In the first phase, a large sample is drawn to estimate an auxiliary variable, which is 

used to define strata. 
 In the second phase, a smaller subsample is taken from these strata to collect 

information on the main study variable. 
 Example: In agricultural surveys, land area (auxiliary variable) can be used to stratify farms 
before measuring crop yield (study variable). 
 

2. Cost Reduction 
 Reduces overall survey cost by collecting inexpensive auxiliary information in the 

first phase. 
 Only a subsample in the second phase is measured for the costly variable. 

Example: In health surveys, demographic data (first phase) may be easy to collect, while 
medical tests (second phase) are expensive. 
 

3. Improvement of Estimator Precision 
 By using auxiliary variables correlated with the study variable, double sampling helps 

in constructing ratio or regression estimators with lower variance. 
Example: In forestry, tree height (cheap and easy to measure) can be used as an auxiliary 
variable for estimating timber volume (harder to measure). 
 

4. Non-response Adjustment 
 The first phase can help identify and adjust for non-response bias. 
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 In the second phase, additional effort is made to collect data from non-respondents. 
 Example: A follow-up survey of non-respondents to a mail questionnaire to adjust bias in the 
original estimate. 
 

5. Environmental and Ecological Studies 
 Used where remote sensing (satellite or aerial images) provides broad first-phase data, 

and ground truthing (field visits) forms the second phase. 
 Example: Estimating forest cover using satellite imagery (first phase) and field visits to a 
subsample of locations (second phase). 
 

6. Agricultural and Industrial Surveys 
 Used where certain variables like acreage, manpower, or input use can be easily 

obtained initially. 
 Production, efficiency, or income data are then gathered in a subsample. 

 

7. Surveys Involving Sensitive Topics 
 In some surveys, people are more willing to provide general data. 
 The second phase focuses on gathering sensitive or personal information in a smaller, 

more trusted subsample. 
 

EXAMPLE: THREE STAGE SAMPLING:  

         For instance, for conducting a Socio economic survey in a district, where generally 
household is taken as the ultimate stage unit,(i.e., element) population is district. 
In this case element is household a sample of households may be selected in three stages by 
selecting first a sample of Mandals, then a sample of villages from each selected Mandals 
after making a list of all the villages in it and finally a sample of households from each 
selected villages after listing all the households in it. Since, the selection is done in three 
stages; this procedure is termed as three stage sampling. Here, Mandals are taken as first 
stages unit (f s u), villages as second stage units(s s u) and households as third stage units        
(t s u); MMi

  and mmi
 . 
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10.6  OPTIMUM ALLOCATION IN DOUBLE SAMPLING: 
 
We know that, 
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We obtain n, 
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This approximation expression for the variance is now minimized by choice of n and n  for a given 
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10.7  SUMMARY: 
 

Double sampling enhances sampling efficiency by collecting information in two phases.       
It supports: 

 Stratification when classification variables are unavailable, 
 Cost reduction with acceptable precision, 
 Improved estimators through the use of auxiliary variables. 

Key aspects include designing two-phase samples, computing variances, and determining 
optimum sample sizes based on cost and variance trade-offs. 

 
10.8  KEY WORDS:  
 

 Double Sampling / Two-phase Sampling 

 Auxiliary Variable 

 Stratification 

 Subsampling 

 First-phase Sample / Second-phase Sample 

 Variance Estimation 

 Optimum Allocation 

 

10.9  SELF-ASSESSMENT QUESTIONS: 
 

1. What is double sampling (two-phase sampling)? Explain the purpose and process of 
double sampling. 

2. What are the advantages of using double sampling for stratification over direct 
stratification? 

3. Derive the expression for the variance of the estimated mean in double sampling. 
4. Explain how the estimated variance changes with the sample sizes in the first and second 

phases. 
5. Define optimum allocation in the context of double sampling. 
6. Obtain the variance of an estimate for the population mean under double sampling with 

SRSWR at the first stage and SRSWR at the second stage.  
7. Write briefly about Two Phase sampling for stratification. 
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LESSON -11 

MULTI PHASE  SAMPLING 
 
OBJECTIVES: 
 
By the end of this lesson, the learner will be able to: 
 Understand the concept and importance of multiphase sampling in survey methodology 

and its distinction from single-phase sampling. 
 Explain the procedure of double (two-phase) sampling, a specific case of multiphase 

sampling. 
 Apply double sampling for difference estimation, including formulation, assumptions, 

and interpretation. 
 Use double sampling for ratio estimation effectively in appropriate survey contexts. 
 Compute unbiased estimates and estimate variances under difference and ratio 

estimation models in double sampling. 
 Compare the efficiency of double sampling methods with conventional single-phase 

approaches. 
 Identify practical situations where multiphase sampling improves cost-efficiency and 

accuracy. 
 

STRUCTURE: 
 

11.1    Introduction 

11.2    Multi-Phase sampling 

11.3    Difference between Multiphase and Multistage sampling  

11.4    Double Sampling for Difference Estimator 

11.5    Double Sampling for Ratio Estimator 

11.6    Estimation Error & Bias  

11.7    Summary 

11.8    Keywords   

11.9    Self-Assessment Questions 

11.10  Suggested Readings 

 
11.1 INTRODUCTION: 
 

In sample surveys the information on an auxiliary variate x is required many times, 
either for estimation or for selection or stratification to increase the efficiency of the 
estimator. When such information is lacking and it is relatively cheaper to obtain information 
on x , we can consider taking a large preliminary sampling for estimating x  on distribution 
of x  as the case may be, and only a small sample (sometimes a sub sample) for measuring 
the y-variate, the character of interest for estimation. This could mean to devoting a part of 
the resources to this large preliminary sample and, therefore, reduction in sample size for 
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measuring the study variate. This technique is known as Double sampling (or) Two-phase 
sampling and was proposed for the first time by Neyman (1938). When the sample for the 
main survey is selected in three or more phases, the sampling procedure is termed as 
multiphase sampling.    
 

The difference between Multiphase sampling and multistage sampling procedures is 
that in multiphase sampling it is necessary to have a complete sampling frame of the units 
whereas in multistage sampling, a sampling frame of the next stage units is necessary only for 
the sample units selected at the stage. This design is advantageous when the gain in precision 
is substantial as compared to the increase in cost due to collection of information on the 
auxiliary variate for large samples. 

A multiphase sampling is a sampling procedure in which it collects some information 
from the whole unit sample and additional information also is collected, at the same time or 
by later. Usually the additional information is collected to provide more detail information 
about the sample. The multiphase sampling is known as “two-phase sampling” where double 
or more phase sampling procedures can be done in at the same time or by later. The first 
sampling is to collect “basic information” from a large sample of unit and then followed by 
the second sampling collects more about “detailed information”. 

As instance, there is a situation where a man is responsible to carry out a health 
survey on participants regarding some basic question about their diet, smoking habits, 
exercise routines and alcohol consumption. Mean while, another survey is required to collects 
detailed information of the respondent by as asking them to perform physical tests such as 
running on a treadmill or having their blood pressure and cholesterol level to be measured by 
filling out the questionnaires and interviewing participant is relatively economized procedure. 
Hence, the best approach to conduct this survey by approaching this two-phase sampling. In 
the first phase, the interviews are performed on an appropriately sized sample. Then a smaller 
sample is drawn from that sample. The second sample will be continued in the medical test. 
 

11.2. MULTISTAGE SAMPLING: 
 
Multistage sampling divides large populations into stages to make the sampling process 

more practical. A combination of stratified sampling or cluster sampling and simple random 
sampling is usually used. 

Advantages and Disadvantages: 

Multistage sampling is flexible, cost effective and easy to implement. You can use as 
many stages as you need to reduce the sample to a workable size, with no restrictions on how 
you divide the groups. 

However, as the method has a subjective component, it has problems with external 
validity. It is also less accurate than simple random sampling. 
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11.3  DIFFERENCE BETWEEN MULTI-STAGE AND MULTI-PHASE  SAMPLING: 

 

Multi-stage Multi-phase 

1. The procedure of two-stage sampling can be 
generalized to two or more stages. Then it is 
termed as Multi-stage sampling. 

1. When the sample for the main survey is 
selected to three or more phases. Then the 
sample procedure is termed as Multi-phase 
sampling. 

2. In Multi-stage sampling the sampling frame 
of next stage units are necessary only for 
sample units are selected at the stage. 

2. In Multi - phase sampling, it is necessary to 
have a complete sampling frame of the units. 

3. This design is advantages when the gain in 
precision is substantial. 

3. Where as in this design compared to increase 
in cost due to collection of information on 
auxiliary variate for large samples. 

4. Multi-stage is very useful in practice this is 
most feasible procedure is being used in large 
scale surveys. 

4. The use of Multi-phase sampling may be 
given by question of estimating total consumer 
expenditure in a town through the sample 
surveys. 

5. Multi-stage for instance of conducting a 
socio-economic survey in district, here 
selection is done in three stages. Here mandals 
are taken as first stage units, villages are 
second stage units and households are ultimate 
stage units. 

5. In Multi-phase sampling for instance the 
question of estimating the total consumer 
expenditure in a town through sample survey 
only list of households are available but  any 
particular one procedure is select some simple 
characteristics related to consumer expenditure. 

 
11.4  DOUBLE SAMPLING FOR DIFFERENCE ESTIMATOR: 

 
A difference estimator for estimating the population mean  𝒀ഥ  where information on x is 

not available in advance and it is considered important to use the auxiliary variate to derive 
more precise estimate, is discussed here. A priliminary random sample WOR, of size ‘n’ is 
taken and the information on x is collected. 
          A sub sample of size ‘n’ is drawn WOR from the preliminary sample and information 
on y is measured. The difference estimator of  𝒚ഥ may be defined by    

𝑦ௗௗതതതതത = 𝑦ത + β (𝑥′ഥ − �̅�) 
Where  ‘β’ is the population  
yത, �̅� are the sub-sample means for y and x respectively. 
𝑥′ഥ  is the preliminary sample mean of x. 
 
Theorem-1: 
Show that 𝑦ௗௗതതതതത is an unbiased estimator of the population mean , its sampling variance is 
given by 

V(𝑦ௗௗതതതതത) =   (
ଵ

௡
−

ଵ

ே
)𝑠௬

ଶ + (
ଵ

௡
 - 

ଵ

௡′
)(𝑠௬

ଶ+ 𝛽ଶ𝑠௫
ଶ  - 2pβ𝑠௫

ଵ𝑠௬
ଵ) 

Proof: 
Given the first sample, let 𝒚ഥ  be the mean value. 

E(
௬೏೏തതതതതത

௑ത′
) = E{ (𝑦ത + 𝛽(𝑋ത ′ − 𝑋ത))/𝑋ത′} 

                                                            =𝑦ത′ 
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                                               E(𝑦ത′) =  𝑦ത 
                                               E(𝑦ௗௗതതതതത)= 𝑦ത 
 
This shows that the estimator is unbiased.  For the sampling variance in relation th-2 can be 
written as 

V(𝑦ௗௗതതതതത)= 𝑉ଵ𝐸ଶ(𝑦ௗௗതതതതത/ 𝑦ത′) + 𝐸ଵ𝑉ଶ(𝑦ௗௗതതതതത/ 𝑦ത′) 
Here 

                            𝑉ଵ𝐸ଶ(𝑦ௗௗതതതതത/ 𝑦ത′) =(
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௡ᇲ
-

ଵ

ே
)𝑠௬
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                             𝐸ଵ𝑉ଶ(𝑦ௗௗതതതതത/ 𝑦ത′)= 𝐸ଵ(
ଵ

௡
 - 

ଵ

௡ᇱ
) 

෌ (௬భ
ಿ

೙సభ
ାఉ௫భି௬തᇲାఉ௑തᇱ)

(୬ᇲିଵ)
 

= (
ଵ

௡
 - 

ଵ

௡ᇲ
)

෌ (௬భ
ಿ

೙సభ
ିఉ௫భା௬തାఉ௫̅)

(୒ିଵ)

ଶ
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௡ᇲ
) ( 𝑠௬

ଶ+ 𝛽ଶ𝑠௫
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Combining both results, we prove the theorem 
Corollary-1: 

    An unbiased estimator of the sampling variance can be written as  

V(𝑦ௗௗതതതതത) = (
ଵ

௡
 - 

ଵ

ே
) 𝑠௬

ଶ +(
ଵ

௡
 - 

ଵ

௡ᇲ
) 𝑠ௗ
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 Where  𝑠௬
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ಿ
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ಿ

೙సభ
ି௬തିఉ(௫భି௫̅)]

(୬ିଵ)
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Corollary-2: 

If a direct random sample is taken without using the doubt sampling procedure, the sample 

size for the same cost obtained by 'C a nc nc    

𝑛଴= 
஼

௖
= n + 

 ௔ା௡ᇱ௖ᇱ

௖
    and the sampling variance of sample mean will be  

V(𝑦തௗ)= ( 
ଵ

௡బ
−

ଵ

ே
) 𝑠௬

ଶ 

 
Corollary-3: 

Taking k  . y xS S the condition that double sampling is more precise than a precise than a 

direct random sampling will be obtained by 

1

1 ' '
2 1 1

n nc
P K

n n c


           

 

A method using – auxiliary information in the first sample has been discussed by DesRaj 

(1965) showing how this information may be used for achieving the higher precision by 

applying the double sampling techniques. 
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   11.5  DOUBLE SAMPLING FOR RATIO ESTIMATOR: 
 

 

 



Centre for Distance Education                   11.6                   Acharya Nagarjuna University 
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11.6  ESTIMATION ERROR & BIAS: 
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11.7  SUMMARY: 
 
 Multiphase sampling allows step-wise data collection, starting with inexpensive 

information and refining estimates with detailed data from subsamples. 
 It is particularly effective when auxiliary data is available or complete data is expensive 

to obtain. 
 Double sampling is a special case of two-phase sampling, with difference and ratio 

estimators enhancing precision. 
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 Careful selection of auxiliary variables and sample sizes ensures unbiased, efficient 
estimation. 

 Compared to multistage sampling, multiphase sampling keeps the same sampling units, 
focusing on variable complexity rather than population hierarchy. 

 
       Multiphase sampling is a powerful strategy in modern surveys, balancing cost, accuracy, 
and data richness. 
 
11.8    KEYWORDS: 
 

 Multiphase sampling 

 Double sampling 

 First-phase sample 

 Second-phase sample 

 Auxiliary variable 

 Difference estimator 

 Ratio estimator 

 Preliminary information 

 Improved estimation 

 Cost-effective sampling 

 Precision improvement 

 Sampling phases 

 Estimation bias 

 Efficiency gain 

 Correlation with auxiliary variable 

 Estimator of population mean 

 Estimator of population total 

 Variance reduction 

 Sampling error 

 Non-response adjustment 

 
11.9    SELF-ASSESSMENT QUESTIONS: 

1. Define Multiphase Sampling. Explain its purpose and advantages in statistical surveys. 
Illustrate with suitable examples. 

2. Distinguish between Multiphase Sampling and Multistage Sampling. Provide at least 
two examples to highlight the practical differences in application. 
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3.  Explain the procedure of Double Sampling for the Difference Estimator. Derive the 
estimator and discuss its variance. Under what conditions is this method preferred? 

4.  Describe Double Sampling for the Ratio Estimator. Derive the expression for the ratio 
estimator and its variance under double sampling. When is this method more efficient 
than simple random sampling? 

5. What is Estimation Error and Bias in the context of multiphase sampling? How can 
they be reduced? Illustrate with appropriate statistical expressions. 

6. Discuss in detail the advantages and limitations of using double sampling techniques in 
large-scale surveys. 

7. Compare and contrast the Efficiency of double sampling with that of single-phase 
sampling using both difference and ratio estimators. Support your answer with 
formulas. 

8. Discuss the practical considerations (cost, time, availability of auxiliary variables, etc.) 
involved in choosing between single-phase, multiphase, and multistage sampling in 
large-scale surveys. 
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LESSON -12 
DOUBLE SAMPLING FOR REGRESSION 

ESTIMATOR 
 
OBJECTIVES: 
 
 

After completing this lesson, learners will be able to: 

 Understand the concept of double sampling for regression estimator: Define and 
explain the purpose of regression estimation in survey sampling. 

 Describe the methodology and advantages of using double (two-phase) sampling in 
regression estimation. 

 Derive unbiased estimators and estimate variances using auxiliary variables in two-
phase sampling. 

 Apply the principles of optimum allocation in sampling: Understand the need for 
optimum allocation under cost constraints and fixed population structures. 

 Derive formulas for optimum allocation in double sampling (e.g., Neyman allocation). 

 Apply optimum allocation techniques to minimize variance or cost in practical survey 
designs. 

 Understand varying probability sampling techniques: Explain the concept of 
Probability Proportional to Size (PPS) and unequal probability sampling. 

 Discuss and apply Horvitz–Thompson estimator and its properties. 

 Compare different selection methods (e.g., cumulative total method,  Lahiri’s method) 
for varying probability sampling. 

 Evaluate estimation efficiency: 

 Compare regression, ratio, and difference estimators under double sampling. 

 Analyze the impact of auxiliary variable correlation on the efficiency of regression 
estimators. 

 Use simulations or examples to assess estimator performance. 
 

 

STRUCTURE: 
 

12.1    Introduction 

12.2    Double Sampling for Regression Estimator 

12.3    Bias & Mean Square Error 

12.4    Optimum Allocation Varying Probability Sampling 

12.5    Summary 

12.6    Keywords   

12.7    Self-Assessment Questions 

12.8    Suggested Readings 
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12.1 INTRODUCTION: 
 

In survey sampling, precision and cost-efficiency are critical. To achieve both, 
advanced sampling techniques like double sampling, optimum allocation, and varying 
probability sampling are used. These techniques improve the reliability of estimators and 
reduce survey costs, especially when auxiliary information is available or when complete 
frames are difficult to obtain in the first phase. 
Double Sampling for Regression Estimator 

Double sampling (or two-phase sampling) involves selecting a large preliminary 
sample in the first phase to collect auxiliary information, followed by a smaller second-phase 
sample to collect the main variable of interest. When a linear relationship exists between the 
study variable YYY and an auxiliary variable XXX, the regression estimator in double 
sampling improves the efficiency of estimates. This is especially useful when XXX is easy to 
obtain but YYY is costly or time-consuming to measure. 
Optimum Allocation in Double Sampling 

Optimum allocation is a strategy used to allocate sample sizes among strata (or phases) 
to minimize variance for a fixed total cost, or to minimize cost for a fixed precision level. In 
the context of double sampling, optimum allocation determines the best allocation of sample 
sizes between the first and second phases by taking into account cost functions, variances, 
and correlation between variables. It ensures resources are used efficiently to achieve reliable 
estimates. 
Varying Probability Sampling 

In many practical situations, selecting units with probabilities proportional to size 
(PPS) or other known characteristics (e.g., revenue, population size) can enhance efficiency. 
Varying probability sampling refers to such designs where each unit in the population has a 
known but unequal probability of selection. This method is especially useful when some units 
contribute more information than others. Proper estimation techniques must be used to 
account for the unequal selection probabilities and maintain unbiasedness. 
             
12.2  DOUBLE SAMPLING FOR REGRESSION ESTIMATOR: 
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12.3  BIAS & MEAN SQUARE ERROR: 
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12.4  OPTIMUM  ALLOCATION  VARYING  PROBABILITY  SAMPLING: 
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12.5  SUMMARY: 
 

 Double Sampling with Regression Estimators leverages auxiliary variables to increase 
estimation efficiency. 

 Bias and MSE are vital for understanding estimator quality. 
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 Varying Probability Sampling ensures that information-rich units are adequately 
represented in the sample. 

 Double sampling is a cost-effective method when auxiliary information is inexpensive. 

 Error analysis (bias and MSE) guides estimator reliability. 

 Optimum allocation balances cost and efficiency. 

 Varying probability sampling introduces flexibility and efficiency in heterogeneous 
populations. 
 

These tools together empower researchers to design more precise, cost-effective, and 
representative surveys. 
 
12.6  KEY WORDS: 
 

 Double Sampling 

 Regression Estimator 

 Auxiliary Variable 

 Estimation Error 

 Mean Square Error 

 Optimum Allocation 

 Varying Probability Sampling 

 Probability Proportional to Size (PPS) 

  
12.7  SELF-ASSESSMENT QUESTIONS: 

 
1. Explain the basic idea behind two-phase (double) sampling with an example. 
2. What are the steps involved in implementing double sampling for a regression 

estimator? 
3. Derive the formula for the double sampling regression estimator. 
4. Why is an auxiliary variable used in regression estimation? 
5. How does the use of double sampling improve the regression estimator? 
6. What is the formula for the mean square error (MSE) of a double sampling regression 

estimator? 
7. What is meant by optimum allocation in the context of double sampling? 
8. What is varying probability sampling and how is it used in double sampling? 
9. Describe probability proportional to size (PPS) sampling improve estimator efficie 

    
12.8   SUGGESTED READINGS: 
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  LESSON -13  
NON-SAMPLING & NON-RESPONSE ERRORS 

 
OBJECTIVES: 
 
 

After completing this lesson, learners will be able to: 

 To understand the concept of non-sampling errors: Differentiate between sampling and 
non-sampling errors 

 Comprehend the impact of non-sampling errors on survey accuracy 

 To identify various sources and types of non-sampling errors: Explore sources such as 
measurement, processing, coverage, and response errors. 

 Classify types like interviewer bias, respondent bias, and data handling errors 

 To study non-response errors and their implications: Understand types of non-response: 
item and unit non-response 

 Learn the effects of non-response on data quality and estimation bias 

 To learn techniques for adjustment of non-response 

 Study weighting adjustments, imputation methods, and follow-up surveys 

 Understand the trade-offs in applying each technique 

 To apply the Hansen and Hurwitz Technique for non-response adjustment 

 Learn the procedure and assumptions behind the Hansen-Hurwitz method 

 Calculate unbiased estimates using sub sampling of non-respondents 

 To understand and apply Deming’s model of total survey error 

 Explore Deming’s framework integrating both sampling and non-sampling errors 

 Use this model to design more accurate and efficient surveys. 
 
STRUCTURE: 
 
 

13.1     Introduction 

13.2     Sources of Non-sampling errors 

13.3     Types of Non-sampling errors 

13.4     Non-response errors 

13.5     Techniques for adjustment of Non-response 

13.6     Hansen and Hurwitz technique 

13.7     Deming’s model 

13.8     Summary 

13.9     Key words 

13.10 Self- Assessment Questions 

13.11 Suggested Reading 
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13.1 INTRODUCTION: 
 

It is a general assumption in the sampling theory that the true value of each unit in the 
population can be obtained and tabulated without any errors. In practice, this assumption may 
be violated due to several reasons and practical constraints. This results in errors in the 
observations as well as in the tabulation. Such errors which are due to the factors other than 
sampling are called non-sampling errors. The non-sampling errors are unavoidable in census 
and surveys. 
 

The data collected by complete enumeration in census is free from sampling error but 
would not remain free from non-sampling errors. The data collected through sample surveys 
can have both – sampling errors as well as non-sampling errors. The non-sampling errors 
arise because of the factors other than the inductive process of inferring about the population 
from a sample. 
 

In general, the sampling errors decrease as the sample size increases, whereas non-
sampling error increases as the sample size increases. In some situations, the non-sampling 
errors may be large and deserve greater attention than the sampling error. 
 

In any survey, it is assumed that the value of the characteristic to be measured has been 
defined precisely for every population unit. Such a value exists and is unique. This is called 
the true value of the characteristic for the population value. In practical applications, data 
collected on the selected units are called survey values and they differ from the true values. 
Such difference between the true and observed values is termed as the observational error or 
response error. Such an error arises mainly from the lack of precision in measurement 
techniques and variability in the performance of the investigators. 

 
13.2  SOURCES OF NON-SAMPLING ERRORS: 

 
Non sampling errors can occur at every stage of planning and execution of survey or census. 
It occurs at the planning stage, fieldwork stage as well as at tabulation and computation stage. 
The main sources of the non-sampling errors are 
  lack of proper specification of the domain of study and scope of the investigation, 
  incomplete coverage of the population or sample, 
  faulty definition, 
  defective methods of data collection and 
  tabulation errors. 
More specifically, one or more of the following reasons may give rise to non-sampling errors 
or indicate its presence: 

 The data specification may be inadequate and inconsistent with the objectives of the 
survey    or census. 

 Due to the imprecise definition of the boundaries of area units, incomplete or wrong 
identification of units, faulty methods of enumeration etc., the data may be duplicated 
or  may be omitted. 
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 The methods of interview and observation collection may be inaccurate or 
inappropriate. 

 The questionnaire, definitions and instructions may be ambiguous. 

 The investigators may be inexperienced or not trained properly. 

 The recall errors may pose difficulty in reporting the true data. 

 The scrutiny of data is not adequate. 

 The coding, tabulation etc. of the data may be erroneous. 

 There can be errors in presenting and printing the tabulated results, graphs etc. 

 In a sample survey, the non-sampling errors arise due to defective frames and faulty 
selection of sampling units. 

These sources are not exhaustive but surely indicate the possible source of errors. 
Non-sampling errors may be broadly classified into three categories. 
 
13.3 TYPES OF NON-SAMPLING ERRORS: 
 

a) Specification errors: These errors occur at planning stage due to various reasons, e.g., 
inadequate and inconsistent specification of data with respect to the objectives of 
surveys/census, omission or duplication of units due to imprecise definitions, faulty 
method of enumeration/interview/ambiguous schedules etc. 

b) Ascertainment errors: These errors occur at field stage due to various reasons e.g., 
lack  of trained and experienced investigations, recall errors and other type of errors in 
data collection, lack of adequate inspection and lack of supervision of primary staff etc. 

c) Tabulation errors: These errors occur at tabulation stage due to various reasons, e.g., 
 inadequate scrutiny of data, errors in processing the data, errors in publishing the 
 tabulated results, graphs etc. 

 

Ascertainment errors may be further sub-divided into 
(i)  Coverage errors owing to over-enumeration or under-enumeration of the population or 
       the sample, resulting from duplication or omission of units and from the non-response. 
(ii)  Content errors relating to the wrong entries due to the errors on the part of investigators 
       and respondents. 
Same division can be made in the case of tabulation error also. There is a possibility of 
missing data or repetition of data at tabulation stage which gives rise to coverage errors and 
also of errors in coding, calculations etc. which gives rise to content errors. 
 

Treatment of non-sampling errors: 
Some conceptual background is needed for the mathematical treatment of non-sampling 
errors. 
Total error: Difference between the sample survey estimate and the parametric true value 
being estimated is termed as total error. 
Sampling error: 
If complete accuracy can be ensured in the procedures such as determination, identification 
and observation of sample units and the tabulation of collected data, then the total error 
would consist only of the error due to sampling, termed as sampling error. 
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The measure of sampling error is mean squared error (MSE). The MSE is the difference 
between the estimator and the true value and has two components: 
- square of sampling bias. 
- sampling variance. 
If the results are also subjected to non-sampling errors, then the total error would have both 
sampling and non-sampling error. 
 

13.4  NON-RESPONSE ERRORS:  
 

The non-response error may occur due to refusal by respondents to give information or 
the sampling units may be inaccessible. This error arises because the set of units getting 
excluded may have characteristic so different from the set of units actually surveyed as to 
make the results biased. This error is termed as non response error since it arises from the 
exclusion of some of the anticipated units in the sample or population. One way of dealing 
with the problem of non-response is to make all the efforts to collect information from a sub-
sample of the units not responding in the first attempt. 

 

Measurement and control of errors: 
Some suitable methods and adequate procedures for control can be adopted before 

initiating the main census or sample survey. Some separate programmes for estimating the 
different types of non-sampling errors are also required. Some such procedures are as 
follows: 

 

 

1. Consistency checks: 
Certain items in the questionnaires can be added, which may serve as a check on the 

quality of the collected data. To locate the doubtful observations, the data can be arranged in 
increasing order of some basic variable. Then they can be plotted against each sample unit. 
Such graph is expected to follow a certain pattern and any deviation from this pattern would 
help in spotting the discrepant values. 
 
2. Sample check: 

An independent duplicate census or sample survey can be conducted on a 
comparatively smaller group by trained and experienced staff. If the sample is properly 
designed and if the checking operation is efficiently carried out, then it is possible to detect 
the presence of non-sampling errors and to get an idea of their magnitude. Such a procedure 
is termed as the method of sample check. 
 
3. Post-census and post-survey checks: 

It is a type of sample check in which a sample (or subsample) is selected of the units 
covered in the census (or survey) and re-enumerate or re-survey it by using better trained and 
more experienced survey staff than those involved in the main investigation. This procedure 
is called as post-survey check or post census. 
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The effectiveness of such check surveys can be increased by 
- re-enumerating or re-surveying immediately after the main census to avoid recall error 
- taking steps to minimize the conditioning effect that the main survey may have on the work 
of the check-survey. 
 
4. External record check: 

Take a sample of relevant units from a different source, if available, and to check 
whether all the units have been enumerated in the main investigation and whether there are 
discrepancies between the values when matched. The list, from which the check-sample is 
drawn for this purpose, need not be a complete one. 
 
5. Quality control techniques: 

The use of tools of statistical quality control like control chart and acceptance sampling 
techniques can be used in assessing the quality of data and in improving the reliability of final 
results in large scale surveys and census. 
 
6. Study or recall error: 

Response errors arise due to various factors like the attitude of respondents towards the 
survey, method of interview, skill of the investigators and recall errors. Recall error depends 
on the length of the reporting period and on the interval between the reporting period and data 
of survey. One way of studying recall error is to collect and analyze data related to more than 
one reporting period in a sample (or sub-sample) of units covered in the census or survey. 
 
7. Interpenetrating sub-samples: 

The use of interpenetrating sub-sample technique helps in providing an appraisal of the 
quality of information as the interpenetrating sub-samples can be used to secure information 
on non-sampling errors such as differences arising from differential interviewer bias, 
different methods of eliciting information etc. After the sub-samples have been surveyed by 
different groups of investigators and processed by different team of workers at the tabulation 
stage, a comparison of the final estimates based on the subsamples provides a broad check on 
the quality of the survey results. 
 
13.5 TECHNIQUES FOR ADJUSTMENT OF NON-RESPONSE: 
 
Non-response errors occur when some selected participants in a survey or study don't 
respond, leading to potential bias in the results. To mitigate these errors, techniques 
like weighting adjustments, imputation, and response propensity weighting are employed. 

 
Types of Non-response: 
 Unit Non-response: Occurs when an entire survey or a unit (e.g., a household) doesn't 

respond. 

 Item Non-response: Happens when respondents don't answer specific questions within a 
survey Techniques for Adjustment: 
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1. Weighting Adjustments: 

 Post-stratification: Dividing the population into subgroups (strata) and adjusting 
weights to match known population totals within each stratum.  

 Raking: Iteratively adjusting weights to match multiple control totals (e.g., age, 
gender, income).  

 Response Propensity Weighting: Assigning weights based on the probability of a 
unit responding, often estimated using logistic regression.  

 

2. Imputation: 

 Mean Imputation: Replacing missing values with the average response from those 
who did answer.  

 Regression Imputation: Using a regression model to predict missing values based 
on other variables.  

 Multiple Imputation: Creating several plausible imputed datasets to account for 
uncertainty in the imputed values.  

 

3. Other Techniques: 

 Calibration Weighting: Adjusting weights to match external benchmarks, like 
census data.  

 Response Rate Maximization: Employing strategies to encourage participation and 
reduce non-response during the data collection phase.  
 

Key Considerations: 
 Pattern of Missingness: 

  Understanding why non-response occurs (e.g., refusals, not-at-homes) is crucial for 
  choosing appropriate adjustment methods.  
 

 Assumptions: 

  Weighting adjustments often rely on assumptions about the similarity of respondents and       
  non-respondents.  
 

 Data Integrity: 
  Imputation methods should be carefully considered to minimize bias and maintain data     
  integrity.  
  By using these techniques, researchers can reduce the impact of non-response errors and       
  produce more reliable survey results.  
 
 
 
 
 
 



Sampling Theory                                           13.7                     Non-Sampling & Non-res… 
 

13.6 HANSEN AND HURWITZ TECHNIQUE: 
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13.7  DEMING’S MODEL: 

 
William Edwards Deming (October 14, 1900 – December 20, 1993) was an American 

business theorist, composer, economist, industrial engineer, management consultant, 
statistician, and writer. Educated initially as an electrical engineer and later specializing 
in mathematical physics, he helped develop the sampling techniques still used by the United 
States Census Bureau and the Bureau of Labor Statistics. He is also known as the father of 
the quality movement and was hugely influential in post-WWII Japan, credited with 
revolutionizing Japan's industry and making it one of the most dominant economies in the 
world. He is best known for his theories of management.  

 
The Deming System of Profound Knowledge: 

The prevailing style of management must undergo transformation. A system cannot 
understand itself. The transformation requires a view from outside. The aim of this chapter is 
to provide an outside view—a lens—that I call a system of profound knowledge. It provides a 
map of theory by which to understand the organizations that we work in.  

The first step is transformation of the individual. This transformation is discontinuous. It 
comes from understanding of the system of profound knowledge. The individual, 
transformed, will perceive new meaning to his life, to events, to numbers, to interactions 
between people. 

Once the individual understands the system of profound knowledge, he will apply its 
principles in every kind of relationship with other people. He will have a basis for judgment 
of his own decisions and for transformation of the organizations that he belongs to. 

Deming advocated that all managers need to have what he called a System of Profound 
Knowledge, consisting of four parts: 
1. Appreciation of a system: understanding the overall processes involving suppliers, 

producers, and customers (or recipients) of goods and services (explained below); 
2. Knowledge of variation: the range and causes of variation in quality, and use of 

statistical sampling in measurements; 
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3. Theory of knowledge: the concepts explaining knowledge and the limits of what can be 
known. 

4. Knowledge of psychology: concepts of human nature. 
The System of Profound Knowledge is the basis for application of Deming's famous               
14 Points for Management, described below. 
 
W. E. Deming’s 14 Key Principles: 

1. Constancy of purpose: Create constancy of purpose for continual improvement of 
products and service to society, allocating resources to provide for long range needs 
rather than only short term profitability, with a plan to become competitive, to stay in 
business, and to provide jobs. 

2. The new philosophy: Adopt the new philosophy. We are in a new economic age, 
created in Japan. We can no longer live with commonly accepted levels of delays, 
mistakes, defective materials and defective workmanship. Transformation of Western 
management style is necessary to halt the continued decline of business and industry. 

3. Cease dependence on mass inspection: Eliminate the need for mass inspection as the 
way of life to achieve quality by building quality into the product in the first place. 
Require statistical evidence of built in quality in both manufacturing and purchasing 
functions. 

4. End lowest tender contracts: End the practice of awarding business solely on the 
basis of price tag. Instead require meaningful measures of quality along with price. 
Reduce the number of suppliers for the same item by eliminating those that do not 
qualify with statistical and other evidence of quality. The aim is to minimize total cost, 
not merely initial cost, by minimizing variation. This may be achieved by moving 
toward a single supplier for any one item, on a long term relationship of loyalty and 
trust. Purchasing managers have a new job, and must learn it. 

5. Improve every process: Improve constantly and forever every process for planning, 
production, and service. Search continually for problems in order to improve every 
activity in the company, to improve quality and productivity, and thus to constantly 
decrease costs. Institute innovation and constant improvement of product, service, and 
process. It is management's job to work continually on the system (design, incoming 
materials, maintenance, improvement of machines, supervision, training, retraining). 

6. Institute training on the job: Institute modern methods of training on the job for all, 
including management, to make better use of every employee. New skills are required 
to keep up with changes in materials, methods, product and service design, machinery, 
techniques, and service. 

7. Institute leadership: The aim of supervision should be to help people and machines 
and gadgets to do a better job. Supervision of management is in need of overhaul, as 
well as supervision of production workers. 

8. Drive out fear: Encourage effective two-way communication and other means to drive 
out fear throughout the organization so that everybody may work effectively and more 
productively for the company. 
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9. Break down barriers: Break down barriers between departments and staff areas. 
People in different areas, such as Leasing, Maintenance, Administration, must work in 
teams to tackle problems that may be encountered with products or service. 

10. Eliminate exhortations: Eliminate the use of slogans, posters and exhortations for the 
work force, demanding Zero Defects and new levels of productivity, without providing 
methods. Such exhortations only create adversarial relationships; the bulk of the causes 
of low quality and low productivity belong to the system, and thus lie beyond the power 
of the work force. 

11. Eliminate arbitrary numerical targets: Eliminate work standards that prescribe 
quotas for the work force and numerical goals for people in management. Substitute 
aids and helpful leadership in order to achieve continual improvement of quality and 
productivity.  

12. Permit pride of workmanship: Remove the barriers that rob hourly workers, and 
people in management, of their right to pride of workmanship. This implies, among 
other things, abolition of the annual merit rating (appraisal of performance) and of 
Management by Objective. Again, the responsibility of managers, supervisors, foremen 
must be changed from sheer numbers to quality.  

13. Encourage education: Institute a vigorous program of education, and encourage self 
improvement for everyone. What an organization needs is not just good people; it needs 
people that are improving with education. Advances in competitive position will have 
their roots in knowledge. 

14. Top management commitment and action: Clearly define top management's 
permanent commitment to ever improving quality and productivity, and their obligation 
to implement all of these principles. Indeed, it is not enough that top management 
commit themselves for life to quality and productivity. They must know what it is that 
they are committed to-that is, what they must do. Create a structure in top management 
that will push every day on the pre ceding 13 Points, and take action in order to 
accomplish the transformation. Support is not enough: action is required! 

 
13.8  SUMMARY: 

 
This unit focused on non-sampling errors, which are errors not related to the process of 
selecting a sample but rather to other factors that can affect the accuracy and reliability of 
survey results. 
 

 Introduction introduced the concept of non-sampling errors and highlighted their 
significance in survey methodology. 

 Sources of Non-sampling Errors included human errors, data processing mistakes, 
faulty questionnaire design, and interviewer bias. 

 Types of Non-sampling Errors were classified into four categories: coverage errors, 
response errors, non-response errors, and processing errors. 

 Non-response Errors were emphasized as a major source of bias, occurring when 
selected units do not participate or provide incomplete information. 
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 Techniques for Adjustment of Non-response described various methods such as 
weighting adjustments, imputation techniques, and follow-up strategies to minimize bias. 

 Hansen and Hurwitz Technique presented a practical approach where a sub-sample of 
non-respondents is re-contacted to estimate and adjust for bias. 

 Deming’s Model provided a theoretical framework showing how total survey error can 
be decomposed into identifiable components, aiding better design and error control. 

In conclusion, while sampling errors can be reduced by increasing the sample size or 
improving sampling techniques, non-sampling errors require careful planning, 
monitoring, and correction. Understanding their sources and applying suitable adjustment 
techniques is essential for enhancing the validity and reliability of survey estimates. 

 
13.9  KEY WORDS: 
  

 Non-sampling Error 

 Response Bias 

 Non-response Error 

 Measurement Error 

 Hansen and Hurwitz Technique 

 Deming’s Model 

 Substitution 

 Imputation 

 Weighting Adjustment 

 Total Survey Error 

 
13.10  SELF-ASSESSMENT QUESTIONS: 
 

1. What are non-sampling errors? How do they differ from sampling errors? 
2. Enumerate and briefly explain the different sources of non-sampling errors. 
3. Classify non-sampling errors and describe each type with suitable examples. 
4. What is a non-response error? How can it affect the reliability of survey results? 
5. List and explain the common techniques used to adjust for non-response in survey 

sampling. 
6. Describe the Hansen and Hurwitz technique for handling non-response. How does it 

work in practice? 
7. Explain Deming’s model in the context of non-sampling errors. What are its key 

features? 
8. Discuss the impact of interviewer bias and response bias on survey results. How can 

they be minimized? 
9. How does recall bias differ from reporting error in surveys? Give an example of each. 
10. Why is it important to address non-sampling errors in large-scale surveys? 



Centre for Distance Education                        13.12                   Acharya Nagarjuna University 
 

 13.11 SUGGESTED READINGS: 
 
1. Cochran, W.G. (1977), Sampling Techniques (3rd Edition), Wiley. 
2. P. Mukhopadhyay, Title: Theory and Methods of Survey Sampling, PHI Learning Pvt. 

Ltd., New Delhi. 
3. Sukhatme, P.V., Sukhatme, B.V., Sukhatme, S., & Asok, C. (1984). Sampling Theory 

of Surveys with Applications, Publisher: Iowa State University Press. 
4. Singh, D., and Chaudhary, F.S. (1986). Theory and Analysis of Sample Survey Designs, 

Wiley Eastern Ltd. 
5. Deming, W. Edwards (1960). Sample Design in Business Research, Publisher: Wiley 
6. Hansen, M.H., Hurwitz, W.N., & Madow, W.G. (1953). Sample Survey Methods and 

Theory (Vol. I & II), Publisher: Wiley. 
7. Kish, Leslie (1965). Survey Sampling, Publisher: Wiley. 
8. Groves, Robert M. et al. (2009). Survey Methodology (2nd Edition). 

 
 

Dr. U. Ramkiran 
 
 
 



LESSON -14 

RATIO METHOD OF ESTIMATOR 
 
OBJECTIVES:  
 
After studying this lesson, the learner will be able to: 

Understand the Concept of Ratio Estimator 
o Grasp the motivation behind using auxiliary information in estimation. 
o Learn the definition and formulation of the ratio estimator for population mean/total. 
Evaluate Bias and Mean Square Error (MSE) 
o Derive and interpret the expressions for bias and MSE of the ratio estimator. 
o Understand conditions under which the ratio estimator performs better than the 

simple mean per unit estimator. 
Estimate the Variance of Ratio Estimator 
o Learn techniques to estimate the variance of a ratio estimator from sample data. 
o Understand the importance of variance estimation in practical inference. 
Construct Confidence Intervals 
o Develop confidence intervals for population parameters using the ratio estimator. 
o Understand the assumptions and limitations involved in such constructions. 
Compare with Mean Per Unit Estimator  
o Analyze the efficiency of the ratio estimator relative to the mean per unit (unbiased) 

estimator. 
o Understand scenarios where the ratio estimator is more suitable. 
Apply Ratio Estimator in Stratified Sampling 
o Extend the concept of ratio estimation to stratified random sampling designs. 
o Learn how stratification affects bias, variance, and efficiency of the ratio estimator. 
Apply the Ratio Estimator in Practical Survey Situations 
o Use real or simulated survey data to apply ratio estimation techniques. 

 
STRUCTURE: 
 

14.1    Introduction 

14.2    Concept of Ratio estimator 

14.3    Notations and Definitions 
           14.3.1  Examples for the use of Ratio Estimates 
           14.3.2  Theorems 

14.4    Bias of the ratio estimate    

           14.4.1 Best Linear Unbiased Estimate (BLUE) 

14.5    Bias and mean square error    

14.6    Estimation of variance, confidence interval and comparison with mean per unit    
     estimator 
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14.7     Ratio estimator in stratified random sampling  

14.8     Summary 

14.9     Key words 

14.10 Self -Assessment Questions 

14.11   Suggested Reading 

 
14.1  INTRODUCTION: 

  
In survey sampling, improving the precision of estimators is a key goal, especially 

when auxiliary information is available. The ratio estimator is one such method that utilizes 
the known relationship between the study variable and an auxiliary variable to enhance 
estimation efficiency. 

Unlike the simple mean per unit estimator, the ratio estimator takes advantage of the 
correlation between the variable of interest (say, income) and an auxiliary variable (say, 
expenditure) to provide more accurate population estimates, particularly when a strong linear 
relationship exists through the origin. 
This method is especially useful when: 

 The auxiliary variable is positively correlated with the study variable. 
 The population mean or total of the auxiliary variable is known. 
 The coefficient of variation of the auxiliary variable is smaller than that of the study 

variable. 
The ratio estimator can be extended to complex designs like stratified random sampling, 
offering further improvements in precision when applied appropriately. 

In this chapter, we will explore the concept of ratio estimation, derive expressions for 
its bias and mean square error (MSE), understand variance estimation and confidence 
intervals, and compare its performance with the mean per unit estimator. Applications in 
stratified sampling will also be discussed to highlight its practical significance in survey 
design. 
 
14.2 CONCEPT OF RATIO ESTIMATOR: 

 
Study variable - iy ,

 
Auxiliary variable - ix  

Each unit having a pair of units (𝑥௜, 𝑦௜),      𝑌, 𝑌,ഥ 𝑌෠, 𝑌ത෠ 

We want to estimate  
௒ത

௑ത
=

௒ ே⁄

௑ ே⁄
= 𝑅 and 𝑅෠ is called “the ratio of two estimates”. 

 
14.3 NOTATIONS AND DEFINITION: 

 

i
y : The value of the characteristic under study for the 𝑖௧௛ unit of the population (study 

variable) 

ix : The value of the auxiliary variable on the same unit. 
ix  is correlated with 𝑦௜. [where  𝑥௜ 

is the in the two-phase or double sampling possession of advance information about an 
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auxiliary  variate𝑥௜]. 
Y: The total of 𝑦௜ values in the population. 
𝑦 : The total of 𝑦௜ values in the sample. 
X: The total of 𝑥௜ values in the population. 
x : The  total of 𝑥௜ values in the sample. 

Y Y
R = =

X X
= the ratio of the population totals (or) population means of variates 𝑦௜ and 𝑥௜. 

 = correlation coefficient between 𝑦௜ and 𝑥௜ in the population. 

 
Suppose it is desired estimate Y or𝑌ത or R by drawing a SRS of n-units (𝑥௜ , 𝑦௜),

(𝑖 = 1,2, − − −, 𝑛) from the population. Let us assume that, based on n-pairs of observations 
𝑦ത and �̅� are the sample means of 𝑦௜ and 𝑥௜ respectively and the population total X or 
population mean 𝑋ത is known. The ratio estimators of the ratio R, total Y and the mean 𝑌ത may 
be defined by 

𝑅෠ =
𝑦

𝑥
=

𝑦ത

�̅�
→ (1) 

𝑌෠ோ =
𝑦ത

�̅�
𝑋 = 𝑅෠𝑋 → (2) 

𝑌ത෠ோ =
𝑦ത

�̅�
𝑋ത = 𝑅෠𝑋ത → (3) 

 
14.3.1 EXAMPLES FOR THE USE OF RATIO ESTIMATES: 

 
1) If 𝑥௜ is the value of 𝑦௜ at some previous time, the ratio method uses the sample to estimate 

the relative change 
௒

௑
 that has occurred since that time. The estimated relative change 

௬

௫
 is 

multiplied by the known population total X on the previous occasion to provide an estimate 
of the current (present) population total. 

2) 𝑥௜ may be the total acreage( large portion of the parks/forest) of a form and 𝑦௜ be the no. of 
acres sown to some crop. The ratio estimate will be successful in this case all framers 
devote about the same percentage of their total average of this crop. 

3) The ratio of corn acres to wheat acres, the ratio of expenditures on labour to total 
expenditures are the examples if the problem is to estimate a ratio. 

14.3.2 THEOREM -1: If variates 𝑦௜𝑎𝑛𝑑𝑥௜ are measured on each unit of a SRS of size n, 

             assumed large, the variances of 𝑅෠, 𝑌෠ோ𝑎𝑛𝑑𝑌ത෠ோ are obtained approximately as  

   2

N

2
i=1

i1- f iV R            (1)
N-1n

-y

X

xR 
 

 
 
 

  

   2

N
2

R
i=1

1- f iV          (2)
n N-1

-Ry
NY

ix 
 

 
 
 

  
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   2

N

R i=1

i1- f iV           (3)
n N-1

R-y
Y

x 
 

 
 
 

  

Where       
R RR

Y n
R = , f = , R , = R X, = RX, = N R

NX Y YY
y

x
x

  

Proof: Let us consider, 
y y R

R R = R
x

x x


    

     If n is large, x  should not differ greatly from X .  y R
R R        (4)

X

x
    

     Now average overall simple random samples of size n. 

   E y R
E R R

X

x
 

   E y R E Y R X
0,

X X

x 
    since R=

Y

X
 

This shows that to the order of approximation used here R  is an unbiased estimate of R. 
Now from equation (4), 

     2 2

2

1
E R-R = V R = E y-R

X
x  

These quantity y - R x  is the sample mean of the variate   R=
Y

X
, Y = R X    

 

i =d i iy Rx , whose population mean D = Y - R X 0 = R X - R X 0 . 

Hence we can find variance of  R  for the variance of the mean of a SRS to the variate id

and dividing by 2
X . This gives 

     2
2

2 2 2

1 1 1 1- f
V R = E = V d = . . d-D

nX X X
dS   21- f

V y
n s

   
  

 2

N

2
i=1

-Dd1- f i
=

N-1n X


 2
N

2
i=1

-y1- f i=       (5)
N-1n X

Rxi   

Since ˆ ˆ.RY R X  

       222
RV = V R. = V R = V RNX XY X  

   2
N

22
R 2

i=1

1- f
V .NY n N-1

y Rxi iX
X


               [From ( 5 )] 

                  =
 2

N
2

i=1

-y1- f i  N
n N-1

Rxi
  

Since 
R

ˆ= .Y R X  

 

     2

R
V = V R = V RXY X

                [from 5]
 

   2
N

2
2R

i=1

-y1- f iV XY N-1n X

Rxi   
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   2
N

R
i=1

-y1- f iV Y n N-1

Rxi
 
  
 
 

 

Corollary-1: There are various alternative forms of the above results. 
Since Y R X , we may write 

       
2 2N

R
i=1

(1- f)NV Y R XyY in N-1 ix        

        
2 N 2 2

2
i

i=1 i i

(1- f)N 2R Y XY X yy Rin N-1
ixxi

          
 

The correlation coefficient    between 
iy and ix  in the finite population is defined by the 

equation 

  
   

ii

2 2

E - Y - Xy x
=

E .E-Y -Xy xii

    ,  

  

   

i
i

2 2

i i

Y Xy

N=
Y Xyi .

N N

ix

xi



 


 

 

 

   
   
   

   

   
 

2 2

 

 
  =

1 N-1

 
  =

N-1

i i
i

i i
i i

i i
i

y x

i i
i

y x

y Y x X

y Y x X

y Y x X

N S S

y Y x X

S S


 


  

 



 

 
   

 
   

2
2 2

2
2 2

 1
1

 

     1
1

i
i

y y i
i

i
i

x x i
i

y Y
S N S y Y

N

x X
S N S x X

N

 
       
 
       









 

This leads to the result in  RV Y   is 

   
        
2

2 2
2

1 1

1
2

1

N N

R i i i i
i i i

N f
V Y y Y R x X R y Y x X

n N  

            

   2
2 2 21

2R y x y x

N f
V Y S R S R S S

n



      

  22 2 2
2

2 2 2

21 y y xx
S R S SN f R S

Y
n Y Y Y

 
    

 

2

2

X
 Divide and multiply by 

Y

 
 
 
 
  

  2 2
22

2 2

21 y y xx
S S Sf S

N Y
n Y XY Y

 
    

 

2
2 22 2

2 2 2

Y Y 2
 R=  X =Y =  X 

X X

RS
R R RX

R X

 
  
 
 
  

Where yx y xS S S  is the covariance between &i iy x . 

This relation may also be written  as 

     21
2  6R yy xx yx

f
V Y Y c c c

n


        

Where  ,yy xxc c  are the squares of the coefficient of variance (cv) of &i iy x  respectively and 
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yxc  is the relative co-variance. 

Corollary-2:-   since    ,  , R RY Y R  differ only by known multipliers, the coefficient of 

variation is same for all the three estimates 

 
     2

2

1
= 2  - 7yy xx yx

V YR f
cv c c c

Y n


      

The quantity  2
cv has been called relative variance. Then  

 
     

 

 
   

2
222

2 2 2

2
2

2

2 2

21

=                  ' 6

1
2 1 Y

    =  = 2 --- 8

R yy xx yx
R

yy xx yx

yy xx yx

V Y c c cf
YV Y

NN ncv Equ n
Y Y Y

f
Y c c c fn c c c Y

n NY

 

    


   

    
 





 

 
 

   



 

2
222

2 2 2

21

      Again      =     ' 6

R yy xx yx

R

c c cfV Y YV R X YnXcv R from equ n
R R R X

  
           

  
 

  

 2

22

2

2

21

   =           

yy xx yxc c cf Y
Xn N
N

R

  
    

 
   

   
 

2

2

2 2

2

21
      =         

R

yy xx yx
Yc c cf N

n X
N

  
 
 

   

   

2 2 2 22 2 2
2

2

21
   =  R    

R

1
 2

yy xx yx

yy xx yx

c c cf Y
R Y R X X R Y

n X

f
cv c c c

n

         
   


  



 

 
14.4 BIAS OF THE RATIO ESTIMATE: 

 
Result-1:- obtain the bias of the ratio estimate and its relative bias 
Proof:-   we know that 



 
1

y y
= = 1

1

y y Rx y Rx Rx Rx x X
R R R

x x X Xx XX x X
X

X


     

           
 

 

Expanding by a Taylor’s series, we get 

 1
y Rx x X

R R
Xx

  
    

 
  
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Ignoring the terms of the second and higher orders, we have   

E(𝑅෠ − 𝑅)= 
ଵ

௑ത
ቂ𝐸(�̅� − 𝑅�̅�) −

1

�̅�
𝐸{(�̅� − 𝑅�̅�)(�̅� − �̅�)}ቃ,since E(𝑦ത-R�̅�)=𝑌ത-R𝑋ത=0 ,since 

R=
௒ത

௑ത
 

E(𝑅෠ − 𝑅) = −
ଵ

௑തమ
𝐸{(𝑦ത − 𝑅�̅�)(�̅� − 𝑋ത)}      =−

ଵ

௑തమ
{𝐸[𝑦ത(𝑦ത − �̅�)] − 𝑅. 𝐸[�̅�(�̅� − 𝑋ത)} 

 
 

                 =−
ଵ

௑തమ
{𝐸[(𝑦ത − 𝑌ത)(𝑦ത − �̅�)] − 𝑅. 𝐸[(�̅� − 𝑋ത)ଶ}  =−

ଵ

௑തమ
ቂ

(ଵି௙)

௡
𝜌𝑆௬𝑆௫ − 𝑅

(ଵି௙)

௡
𝑆௫

ଶቃ 

B(𝑅෠)  =−
ଵି௙

௡௑തమ
ൣ𝑅𝑆௫

ଶ − 𝜌𝑆௬𝑆௫൧ 

This is the bias of the ratio estimate 
  ୆(ோ෠)

ோ
= 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑎𝑠=

௕௜௔௦

ோ
 =−

ଵି௙

௡௑തమೊഥ

೉ഥ

ൣ𝑅𝑆௫
ଶ − 𝜌𝑆௬𝑆௫൧ 

  ୆(ோ෠)

ோ
=

ଵି௙

௡
൫𝐶௫௫ − 𝐶௬௫൯  ----- (1)                       ቂ∵ 𝐶௫௫ =

ௌೣ
మ

௑ത
ቃ 

 
Result -2:-An upper bound to the ratio of the bias to the standard error is given by 

 


  
B R x

cv of x
X

R



    

Proof:-  consider the covariance in SRS’s  of size n,of the quantities R  and x .We have               

       
     
    

 

 
 




 


cov ,  =Y

Y 1 1
  cov , =R- cov ,

X X X

cov ,
     

,  

                        ,    since , 1.

 
  of .

R

y
R x E x E R E x X E R

x

hence E R R x R x

R x
the bias in R is B R E R R

X

R x R x
R x

B R R x
X X

B R x
Hence cv x

X

 
 








 
   

 

 


  

  

 

 

Theorem-6.3:-  In large sample, with simple random sampling, the ratio estimate  RY  has a 

smaller variance then the estimate Y N y   obtained by simple random sampling if 

1

2
yx

SS

X Y


     
     

  

2   y 2
i x

i y

cv of x C

cv of C
  . 

Proof:- For Y  we have                             

   2 21
   1y

f
V Y N S

n

                  
 
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For the ratio estimate we have                     

     2 2 2 21
2    2R y x y x

f
V Y N S R S R S S

n
               

 
 

Hence the ratio estimate has the smaller variance if     
 
 

Note:- 
This theorem shows that the ratio estimate may be either more or less precise than a 

SRS estimate.  The issue depends on the size of the correlation coefficient between &i iy x  

and on the CV’s of these two variables. The variability of the auxiliary variate ix  is an 

important factor, if its cv is more than twice that of iy , the ratio estimate is always less 

precise, since ∫ cannot exceed one . when ix  is the value of  iy  at some previous time, the 

two CV’s may be about equal. In this event the ratio estimate is superior if   >0.5. 

 
14.4.1 BEST LINEAR UNBIASED ESTIMATE(BLUE):- 

 

Consider all estimates that are linear functions of the sample values iy , i.e., that are of 

the form 1 1 2 2 n nl y l y l y          .  Where the l’s do not depend on the iy , although 

they may be functions of ix .  

The choice of theses restricted to those that give unbiased estimates of 𝑌ത. The 
estimate that has be smallest variance is called Best Linear Unbiased Estimate (BLUE). 

 
Theorem-6.4:-With simple random sampling from an infinite population, the ratio estimate 

of  Y  is a (BLUE) if two conditions are satisfied. 

1. The relation between iy and ix  is a straight line through the origin. 

2. The variance of  iy  about this line is proportional to ix . 

Proof:- The mathematical model is i i iy Bx e   

where ie are independent of the ix . In arrays in which ix   is fixed ie  has mean zero and 

variance  ix  

Hence Y BX  

   

   

2 2 2 2

2 2

x

var var

2

                             2

                               RS 2          
2

1 1
                          

2 2 2

    

yx

R

y x y x y

x y x

x
y

y

SSx x
X Y

y y

Y Y

S R S R S S S

R S R S S

RS Y
S R

S X

RS YS

S X S





 



 

   



 
    

 

   



 
 

i

i

 of x1
                             

2  of y 2
x

y

cv C

cv C
  
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It was shown by gauss that the BLUE of BX   is bX   where b is the least squares estimate of 
B. The least squares estimate is  



22

n

i=1
n

i=1

1 1
 , where  ,

         = = =R

   

1
y

21

i i i
i

i
i i i

ii

i

i

W y x
b W this gives

W x x
e

b

yy x ii i nxi
x xix nixi

 





  






 

 

 

Consequently the optimum estimate of  Y is the ratio estimate 

  y
X= R X=Y  R

x

 
 
 

 

 
14.5 BIAS AND MEAN SQUARE ERROR OF RATIO ESTIMATOR: 
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14.6 ESTIMATION OF VARIANCE, CONFIDENCE INTERVAL AND 

COMPARISON WITH MEAN PER UNIT ESTIMATOR: 
 

Estimation of Variance:  

We have    2
2

1ˆ          ................(1)u

f
V R S

nX


  

Where  

 
2

2

1

1
,  U ,  i=1,2,.....,N

1

N

u i i i i
i

S U U Y Rx
N 

   


 

Hence a natural estimator of  ˆV R is 

    2
1 2

1ˆ
u

f
v R S

nX


  

Where  

        
2

2

1

1 ˆ
1

n

u i i
i

S y y R x x
n 

   


 

        

2 2 2

2 2 2

1 1 1

ˆ ˆ  =s s 2

1 ˆ ˆ     = 2 .............(2)
1

y x xy

n n n

i i i i
i i i

R Rs

y R x R x y
n   

 

      

 

 

Since, in estimating ,R X is not often known, an alternative estimator is  

    2
2 2

1ˆ ................(3)u

f
v R S

nX


  

Two variance estimators of ˆRy  are, therefore, approximately 

   2
1 1

ˆˆ ............(4)Rv y X v R  

   2
2 2

ˆˆRv y X v R  

All these estimators        1 2 1 2
ˆ ˆ ˆ ˆ, , ,R Rv R v R v y v y are biased.  
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Confidence Interval:  

 
 

Comparison with Mean per Unit Estimator: 
Under SRSWOR, 

                     21
    yf S

V y
n


  

                    2 2 21 2
ˆV =      

y x xy

R

f S R S RS
y

n

      

Hence, ˆ
Ry will have a smaller variance than y  in SRSWOR, if 

                  R < 2      y

x

S

S
  

i.e., 

                  
 
 

      
2

cv x

cv y
  . 

 

14.7 RATIO ESTIMATOR IN STRATIFIED RANDOM SAMPLING:  
  

When the population is stratified and units are drawn by simple random sampling method 
from each stratum.  There are two ways of obtaining a ratio estimate of the population total 
Y. 

1. Separate ratio estimate 
2. Combined ratio estimate 

 
1. Separate ratio estimate:- 

 If ,h hy x  are the sample totals in the thh stratum and hX  is the stratum total of the hix , the 

separate ratio estimate  RSY  (s for separate) is defined as 
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        1h h
RS h h

h hh h

y y
Y X X

x x
     

This estimate requires knowledge of the separate totals hX . 

 
2. Combined ratio estimate:- 

 From the sample data we compute  
 ,st sth h h

h

Y N y X N x   

      These are standard estimates of the population totals Y and X respectively made from a 

stratified sample. Then the combined ratio estimate   RCY  (c for combined) is defined as




              2
st st st

RC

st stst

N y yY
Y X X x

N x xX
       

      Where    
 

,
st st

stst

Y X
y x

N N
       are the estimated population means from a stratified 

sample. The estimate   RCY  does not require a knowledge of the hX  but only of X. 

Theorem :-1 
If the sample sizes hn are large in all strata,   

     
2

2 2 2

1

1
2      3

L
h h

RS yh h xh h h yh xh
h h

N f
V Y S R S R S S

n





          

      Where h
h

h

Y
R

X
  is the two ratio in stratum h, and h   is the correlation coefficient between 

hiy and hix  in thh  stratum. 

     Proof:- Write                     


 

  
   

     
 

1

2

2

h

                

                 

   V

                         = 2     

                         = V 22

h
Rh h

h

Rs Rh

h

L

Rs Rh h h
h

Rs Rs

Rh Rh Rjh h j
h j h

Rh

y
Y X

x

Y Y

Then Y Y Y Y Y Y

Hence Y E Y Y

E Y Y E Y Y Y Y

Y









      

 

   





 

 





         4

 

Rh Rjh j
h j h

E Y Y Y Y


                    

since  RhY  is the ratio estimate made from a SRS with in stratum  h, using the result of  
 V RY  [from corollary(1)] for the approximate variance of   V RhY  ,we have  

     
2

2 2 21
  V 2     5h h

Rh yh h xh h h yh xh
h

N f
Y S R S R S S

n



                     

 
      The cross product terms vanish because the sampling is independent in the different 
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strata and to the order of approximation used in the variance formula 
RhY  is an estimate 

of Yh . Substitute eqn (5) in eqn (4), we get          

            2
2 2 21

V 2  . h h
Rs yh h xh h h yh xh

h h

N f
Y S R S R S S

n



      

Theorem 2: If the total sample size n is large, 

  2 2 2 2( ) (1 ) / [ 2 ]  6RC h h h yh xh h yh xh
h

v Y N f n S R S R S S                  

Proof: We know that;  / ( ) / ( )RC stst st stY y x X y x N X   

/ ;R Y X Y NY  

( ) / [ ] [ ]      - - - - - - - - - -(7)RC st st st st stY Y N X x y Rx N y Rx      

since n is large stx X  

Now   consider the variate  hi hi hiu y R x   

The right hand side of eqn (7) is stNu ,where stu  the weighted mean of the variate hiu  in  a 

stratified sample. Further ,the population mean   U  of  hiu  is  

( / ) 0U Y RX Y Y X X      
     2 2

2
Rh RC stE Y Y V Y N E u U     

Applying the result of th-5.3[of ] to  we set 

     
2

2 2
2

1 uh
h h hstRC

h h

SV VN N N N nuY
N n

 
   

 
 

 
 

2        (8)
h h h

h
uhRC

h

N N n
V SY

n


    

Where  2
2

1

1

1

h

uh
ih

N
S u uhi hN 

 


 

    2

1

1

1

h

ih

N
y Rx Y R Xhi h hhiN 

      
 

    2

1

1

1

h

ih

N
y xY Xhih hhiN 

      
 

       
2 2

2 2 2
1 1 1

h ih hh i
uh

i i ih h h

y x yY X xh i Y Xhh i h RS R
N N N

   
    

  
 

2 22 2         (9)yh xh yh xhhRS S S SR      

Where 
  
 1

hih hhi
i

h
h yh xh

y xY X

N S S


 



 

Substituting equation (9) in equation (8) we get 

   2
2h hh
uhRC

h h h

N nNV SY
N n


          



 
 
 
 

Centre for Distance Education                    14.16                   Acharya Nagarjuna University 
 

   2
2 22

1
2  .

h h
yh xh yh xhhRC

h h

fN
V RS S S SRY

n



     

 
 
14.8 SUMMARY: 

 
 Ratio Estimator is a widely used method in survey sampling that improves the 

estimation of population parameters by incorporating auxiliary information. 
 It is particularly useful when there is a strong positive correlation between the study 

variable y and the auxiliary variable x. 

 The basic form of the ratio estimator for the population mean is: ˆ .R

X
Y y

x
  

Where  and y x  are sample means of  and y x , and X is the known population mean of x  

 Notations and definitions are introduced for precise understanding, and the estimator is 
analyzed both theoretically and through practical examples. 

 Bias and Mean Square Error (MSE) are derived to understand the estimator’s 
accuracy. Although the ratio estimator is biased, the bias is generally small when the 
sample size is large. 

 The variance and confidence intervals are estimated to quantify uncertainty, and the 
estimator is compared with the mean per unit estimator. Ratio estimator is more 
efficient when the correlation   between  and y x is high. 

 The stratified ratio estimator is an extension applied within strata to further increase 
the efficiency of estimates by reducing within-stratum variability. 

 The ratio estimator is a powerful technique for improving survey accuracy, especially 
when reliable auxiliary data is available. 

 While it introduces a small bias, it reduces variance, often resulting in a lower MSE 
compared to unbiased estimators like the mean per unit estimator. 

 Its utility is enhanced in stratified random sampling, making it suitable for complex 
survey designs. 

 Overall, the ratio estimator is a practical and efficient tool in survey sampling when 
used under appropriate conditions. 

 
14.9 KEY WORDS: 

  

 Ratio Estimator 

 Auxiliary Variable 

 Bias 

 Mean Square Error (MSE) 

 Efficiency 

 Confidence Interval 

 Stratified Sampling 

 Sample Mean 
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 Population Mean 

 Correlation Coefficient 

 Estimator Variance 
 

14.10 SELF-ASSESSMENT QUESTIONS: 
 

1. Define a ratio estimator and state its formula. 
2. Under what condition is the ratio estimator preferred over the mean per unit estimator? 
3. Derive the approximate bias of the ratio estimator. 
4. Explain how variance of the ratio estimator is estimated. 
5. How is ratio estimation extended to stratified random sampling? 
6. Write about Ratio Estimator and derive its variance 
7. Derive Mean Square Error for Ratio Estimator. 
8. Explain ratio estimation. Obtain the variances of ratio estimates in stratified sampling. 
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LESSON -15 

DIFFERENCE ESTIMATOR 
 
OBJECTIVES: 
 
By the end of this module, learners will be able to: 
 Understand the concept and application of the Difference Estimator and the Regression 

Estimator. 
 Derive and interpret the bias, mean square error (MSE), and variance for these 

estimators. 
 Apply the estimators in simple random sampling and stratified random sampling 

frameworks. 
 Compare efficiency of estimators such as Mean per Unit, Ratio, Difference, and 

Regression estimators. 
 Develop and analyze confidence intervals using auxiliary information in survey 

sampling. 
 

STRUCTURE: 
 
15.1  Introduction 

15.2   Concept of Difference estimator 

15.3   Theorems 

15.4   Examples 

15.5   Difference Estimator in stratified sampling 

15.6   Summary 

15.7   Key words 

15.8   Self Assessment Questions 

15.9   Suggested Reading 

 
15.1  INTRODUCTION: 
  

A "difference estimator" and a "regression estimator" are both statistical techniques 
used to improve the accuracy of population parameter estimates by leveraging information 
from an auxiliary variable that is highly correlated with the variable of interest, but while a 
difference estimator simply calculates the difference between the study variable and a 
weighted version of the auxiliary variable, a regression estimator utilizes a linear regression 
model to establish a more precise relationship between the two variables, resulting in 
potentially more efficient estimates, particularly when the correlation between the variables is 
strong. 
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Key points to remember: 
 Difference estimator: 

 Uses a simple weighted difference between the study variable and the auxiliary 
variable, where the weight is a constant value determined based on the known 
population means of both variables.  

 Best suited for situations where the relationship between the study and auxiliary 
variables is relatively linear and the correlation is moderate.  

 Regression estimator: 
 Leverages a regression line to estimate the relationship between the study variable and 

auxiliary variable, allowing for a more nuanced adjustment based on the observed 
data.  

 Generally considered more efficient than a difference estimator, especially when the 
correlation between variables is strong and the relationship is not strictly linear.  

When to use each: 
 a difference estimator is used When the relationship between the study variable and the 
auxiliary variable is relatively simple and a linear approximation is sufficient.  
 a regression estimator is used When there is a strong, potentially non-linear relationship 
between the study variable and the auxiliary variable, and you want to leverage the full 
information from the regression model. 
 
15.2  CONCEPT OF DIFFERENCE ESTIMATOR: 
 
The ratio estimator is most suitable when the relation between  and y x is a straight line passing 

through the origin. i.e., when the regression equation of  on y x is .y kx  In case ,x y are related 

such that for unit increase in value of ,x y increases by an amount ,k where k is a constant, we may 

assume that 

 Y y k X x    

i.e., if x is below X by an amount  X x , then y is expected to be belowY by an amount k

 X x . Hence, we get an estimator of Y as 

 ˆ
Dy y k X x    ………………(1) 

ˆ
Dy is the difference estimator of Y ,first considered by Hansen, Hurwitz and Madow (1953). In 

general, for an arbitrary sampling design, the difference estimator of Y is  ˆ ˆY k X X  , where               

Ŷ , X̂ are respectively estimators of Y , X under this sampling procedure. 

 
15.3  THEOREM-1: 
 
 In SRSWOR,   ˆ, , DN n y  is an unbiased estimator of Y with 

              2 2 21ˆ 2D y x xy

f
V y S k S kS

n


   ……………….(2) 

and an unbiased variance estimator 
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               2 2 21ˆ 2D y x xy

f
v y S k S ks

n


   ………………(3) 

Proof: Since k is a constant, unbaisedness follows readily. Writing 
n

i=1

,  u=i i i iU Y kx u n    

      21ˆ u
D

f S
V y V u

n


   

 
Where 

    
2 2

2

1 1

1

1 1

n N
i

u i i
i I

u u
S Y Y k x X

N N 


   

    

Clearly, 

    21ˆ u
D

f S
V y

n


  

Where 

    
2 2

2

1 1

1

1 1

n n
i

u i i
i I

u u
S y y k x x

n n 


   

    

 
Corollary-1: ˆ

Dy is superior to y (in the smaller variance sense) if  2 0 or 0 < k < 2B,k k B 

   where yB= S Sx , the finite population regression coefficient. 

Corollary-2: For ,k R Y X  the variance of ˆ
Dy is the same as the asymptotic expression for 

   ˆ
RV y . 

Corollary-3: For 1,k   

   
2

2
ˆ 1 2x x

D
y y

S S
V y V y

S S


     
  

………………(4) 

Hence, in this case, Dy has smaller variance than y  if 2 .x yS S   Comparing (3) with the 

approximate expression for  ˆ
RV y , (assuming R > 0),    ˆ ˆ 1,D RV y V y fork if   

     1
 for 0 < R < 1 R > 1

2
x

y

R S

S



   

The optimum values of k , which minimize  ˆ
DV y are obtained by differentiating  ˆ

DV y in eqn (2) 

with respect to k and equating it to zero. The gives the optimum k as 

* y

x

S
k B

S
  ………………(5) 

At *k ,the second derivative of  ˆ
DV y is positive and hence  ˆ

DV y attains its minimum value 

which is  

     2 2

2 2 2
1 11 y

y x

f Sf
S B S

n n

 
  ………………(6) 

In general B will be unknown. However, if a good guesses value 0  of b B is available. Say, from a 

past survey, this may be used for k . Cochran has shown that if the proportional increase in  ˆ
DV y
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over eqn (6) is to be less than , we must have, 
 

 2 2
0 1 1b B      ………………(7) 

      
 Hence, if  is very high,  small, 0b B must be close to unity; however, if  is only moderate, it 

may depart substantially from unity. As an example, for 00.1, 0.4,0.2754 1.7246.b B    
Thus for moderate  ,the choice of 0  b is somewhat robust to the moderate departures from B. 

In case x is the value of y measured at a previous time, B is close to unity and k should be set of 
equal to unity. 
 

15.4  EXAMPLE: 
 
 Imagine estimating the average income of households in a city. If it's difficult to collect 

income data for every household, but data on the average house value is readily 
available, you could use the average house value as the auxiliary variable in a 
difference estimator to improve the accuracy of your income estimate.  

Let’s say we are estimating the average weight y  of a group of students. We also know their 

average height x  and the population mean height X . 

From the sample: 

 62y kg  

 165x cm  
 167X cm  

Using the difference estimator: 

 
 

ˆ

ˆ  = 62 167 165

ˆ  = 64kg

D

D

D

Y y X x

Y

Y

 

  

So, the adjusted estimate of the population mean weight is 64 kg. 

15.5  DIFFERENCE ESTIMASTOR IN STRATIFIED RANDOM  SAMPLING: 
 
Consider a stratified random sampling with ,h hN n as population size and sample size 

respectively for the thh stratum. The separate difference estimator (like the separate ratio 

estimator), assuming the strata regression coefficients  1, 2,.....,hB h L to be known, is 

 
1

ˆ
L

DS h h h h h
h

y W y B X x


     ……………………(1) 

with 
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     2 2 2 2

1

1
ˆ

L h n yh h xh

DS
h h

W f S B S
V y

n

 
   

     2 2 2

1

1 1
ˆ

L h n yh h

DS
h h

W f S
V y

n




 
    ……………………(2) 

Where 

,  f ,  xyhh h
h h h

xh yh

SN n
W

N n S S
    

A combined difference estimator (like a combined ratio estimator) is 

 ˆ
DC st sty y k X x    

Where  

,  st h h st h hy W y x W x    and k  is a suitable constant. To determine the optimum value of 

k , one has to minimize  

       2ˆ 2 ,DC st st st stV y V y k V x Cov y x    

with respect to k . It is seen that the optimum value of k is  

 
 

 
 

2
*

2

S 1 /  ,

S 1 /  
h xyh h hst st

st h xh h h

W f nCov x y
k

V y W f n


 


   

* *   =  (say)h h

h

B
k B




 


  ……………………(3) 

       
Key Points: 

 Choice of Auxiliary Variable: 
The accuracy of the difference estimator depends heavily on the selection of a highly 
correlated auxiliary variable (x) with the study variable (y).  
 

 Advantages: 
 More efficient than simple random sampling when there is significant variation 

within strata but less variation between strata.  
 Can be particularly useful when information on the auxiliary variable is readily 

available.  
 

 Limitations: 
 Requires prior knowledge of the population structure to properly define strata.  
 If the auxiliary variable is poorly correlated with the study variable, the estimator 

may not be accurate.  
 

Study variable - iy ,
 
Auxiliary variable - ix  

Each unit having a pair of units (𝑥௜, 𝑦௜),      𝑌, 𝑌,ഥ 𝑌෠, 𝑌ത෠ 

We want to estimate  
௒ത

௑ത
=

௒ ே⁄

௑ ே⁄
= 𝑅 and 𝑅෠ is called “the ratio of two estimates”. 
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15.6  SUMMARY: 
 
 The difference estimator uses auxiliary information to improve the estimation of the 

      population mean. 

 It is most effective when the auxiliary variable xxx is positively correlated with the 

study variable y . 

 The estimator is unbiased under SRSWOR and often more efficient than the sample 

mean      if the variability in y x is small. 

 The method is also extended to stratified sampling, further enhancing precision. 

 The choice between ratio and difference estimator depends on the correlation structure 

and      variance of  and y x . 

 When properly used, it offers substantial gains over the sample mean estimator. 

 
15.7  KEY WORDS: 
  

 Difference Estimator 

 Auxiliary Variable 

 Sample Mean 

 Population Mean 

 Unbiased Estimator 

 Stratified Sampling 
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15.8  SELF-ASSESSMENT QUESTIONS: 
 
1. What is the basic idea behind the difference estimator? 
2. Under what conditions is the difference estimator more efficient than the sample mean? 
3. Write the formula for the difference estimator and define each term. 
4. State and explain the theorem regarding the bias of the difference estimator. 
5. Derive the variance formula of the difference estimator under SRSWOR. 
6. What is the role of the auxiliary variable in constructing a difference estimator? 
7. How is the difference estimator extended to stratified sampling? 
8. Compare the efficiency of the sample mean and the difference estimator. 
9. What are the assumptions required for the difference estimator to perform well? 
10. Give a numerical example of how to compute a difference estimator. 

 
15.9  SUGGESTED READINGS: 
 
1. Cochran, W.G. (1977), Sampling Techniques (3rd Edition), Wiley. 
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LESSON -16 

REGRESSION METHOD OF ESTIMATOR 
 
OBJECTIVES: 
 

After completing this unit, learners will be able to: 
 Understand the Concept of Regression Estimator 
o Grasp the logic behind using auxiliary variables to improve the estimation of population 

parameters. 
o Explain the theoretical foundation and practical application of the regression estimator. 

 Identify Key Notations and Formulas 
o Familiarize with important terms such as regression coefficient, sample mean, 

population mean, covariance, and variance. 
o Use standard notation for expressing regression-based estimates. 

 Evaluate the Bias and Mean Square Error (MSE) 
o Derive expressions for the bias and mean square error of the regression estimator. 
o Understand under what conditions the regression estimator becomes unbiased or 

achieves minimum MSE. 
 Construct Variance Estimates and Confidence Intervals 
o Learn how to estimate the variance of regression estimators. 
o Construct confidence intervals for population parameters using the regression approach. 

 Compare Regression Estimator with Other Estimators 
o With Mean per Unit Estimator: Understand when regression estimators are more 

efficient and under what assumptions. 
 With Ratio Estimator: Recognize the difference in applicability depending on the 

relationship between variables. 
 Apply Regression Estimator in Stratified Sampling 
o Adapt the regression estimator for stratified random sampling scenarios. 
o Compute combined regression estimates using stratum-wise regression adjustments. 

 Analyze Efficiency and Practical Use Cases 
o Evaluate efficiency gains through numerical examples. 
o Identify practical conditions for using regression estimators in survey sampling. 

 
STRUCTURE: 
 
16.1    Introduction 

16.2    Concept of Regression estimator 

16.3    Notations and Definitions 

16.3.1 Theorems 

16.4     Bias of the regression estimate    

16.5     Bias and mean square error    

16.6     Estimation of variance, confidence interval and comparison with mean per unit    
      estimator 

 

16.7     Regression estimator in stratified random sampling  
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16.8     Summary 

16.9     Key words 

16.10 Self-Assessment Questions 

16.11 Suggested Reading 

 
16.1  INTRODUCTION: 

  
The ratio method of estimation uses the auxiliary information, which is correlated with the 

study variable to improve the precision, which results in improved estimators when the regression 

of Y on X is linear and passes through the origin. When the regression of on X is linear, the line 

doesn't need to always pass through the origin. Under such conditions, it is more appropriate to 

use the regression type estimator to estimate the population means. 

In the ratio method, the conventional estimator sample mean y  was improved by 

multiplying it by a factor 
X

x
where x  is an unbiased estimator of the population mean X which 

is chosen as the population mean of the auxiliary variable. Now, we consider another idea based 
on the differences.  
 
 Consider an estimator of  of x X for which   - 0E x X   

 
Description: Like the ratio estimate, the linear regression estimate is designed to increase 

precision by the use of an auxiliary variate 
ix  which is correlated with 

i
y . When the 

relation between 
i

y  and 
ix  which is correlated with examined, it may be found that 

although the relation is approximately linear. The line does not go through the origin. This 

suggest an estimate based on the linear regression of 
i

y and 
ix  rather than on the ratio of 

the two variables we suppose that 
i

y  and 
ix are each obtained for every unit in the sample 

and that the population mean X of the 
ix is known. The linear regression estimate of y , the 

population mean of the  
i

y is  

                                                      lr
= y + b X - = y - b - Xy x x   

 
where the subscript “ lr ” denotes linear regression and ‘’b” is an estimate of the change in y  

when x is increased by unity. The rational of this estimate is left, since x is below the average 

by an amount  b X - x  be of the regression of  iy
i

y  on 
ix . 

For an estimate of the population total Y , we take  lr lr
= N yY . 
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Examples: 

Applications (or) Situations: 
(1) Watson (1937) used a regression of leaf area on leaf weight to estimate the average area 

of the leaves on a plant. The procedure was to weight all the leaves on the plant. For a 
small sample of leaves, the area and the weight of each leaf were then adjusted by means 
of the regression on leaves weight. The point of the application is ofcourse that the 
weight of a leaf can be found quickly but determination of it’s area is more time 
consuming. This example illustrate a general situation in which regression estimates are 
helpful. 

(2) A rat expert might make a quick eye estimate of the no. of rats in each block in a city are 
and then determine by trapping the actual number of rats in each of a SRS of the blocks. 

(3) An eye estimate of the volume of timber was made on each of a population of 
1

10
 acre 

plots and the actual timber volume was measured for a sample of plots. 
 
16.2 CONCEPT OF REGRESSION ESTIMATOR: 

 

 
 

16.3 NOTATIONS AND DEFINITION: 
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Regression Estimation with Preassigned (b): 
          Although in most applications , b  is estimated from the results of the sample, it is 
some time reasonable to choose the value of b in advance. In repeated surveys, previous 
calculations may have shown that the sample values of b  remain fairly constant. 
          Since the sampling theory of regression estimates when b is pre assigned in both 
simple and information, this case is considered first. 

 
16.3.1 THEOREMS: 

 
Statement: In SRSing , in which 0b is a pre-assigned constant, the linear regression estimate. 

 0lr
y + X -y b x  is unbiased with variance 

      2

N

lr
i=1

-Y - -Xy b Xi01- f i
V =y

n N-1

 
   

              2 2 2
y 0 0

1- f
= - 2 +S b S b S

n
yx x  

Proof : since 0b  is a constant in repeated sampling 

                0lr
E = E y - E - Xy b x  

            lr
E = Y 0 Yy    

lry is an unbiased estimate of Y . 

Further, 
lry is the sample mean of the quantities  i 0 ii

- Xbyu x   

Whose population mean is Y . 

When       2

N

lr
i=1

-Y - -Xy b Xi01- f i
V =y

n N-1

 
   

        
N 22

N N ii2 i=1
0 0lr

i=1 i=1

X-Y - Y - Xy y1- f iV = 2y b
n N-1 N-1 N-1

xi x
b

     
  

 

  2 2 2
y 0 0 y xlr

1- f
V = 2y S b S b S S

n
x      

             2 2 2
y 0 0

1- f
= 2S b S b S

n
x yx    ,where

  
 

i

y x

- Y Xy

N-1 S S

i
i

x



  

Corollary: an unbiased estimate of  lr
V y  is       2

N

lr
i=1

-Y - -Xy b0 i1- f i
=y

n n-1

x
v

 
   

Theorem 7.2 :- The value of b0  which minimize  lr
V y  is  

b0 = B = 
2

S

S

yx

x

 = 
  

 
ii

1
2

i
1

- Y - Xy

- X

N

i
N

i

x

x








=Cov(Y.X)/Var(X) 

Which may be called the linear regression coefficient of y  and x  in the finite population. 
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The resulting minimum variance is  

   22
min ylr

1- f
1yV S

n
   

Proof : we know that    2 2 2
y 0 0 ylr

1- f
V = 2y S b S b S

n
x x   

Put 
0 2

B+ d db
S

yx

x

S    

This gives,  
2

2 2 2
y ylr 4 2 2

1- f S S
V = 2 2 dy S S S

n S S S

yx yx yx
x x

x x x

S
d d

    
        

   
 

               
2 2

2 2 2
y 2 2

1- f S S
= 2 2 2dSS S

n S S

yx yx
xyx yx

x x

d Sd
 

        
 

 

             
2

2 2 2
y 2

1- f S
= S S

n S

yx
x

x

d
  

   
  

 

Clearly this is minimized when d=0 (as other terms depend on data), since 
2

2

2 2
y

S

S S

yx

x

   

   22 2
min y ylr

1- f
yV S S

n
    

   22
min ylr

1- f
1yV S

n
   

Result: Show that in samples of size n the quantity  b- B is of order 
1

n
 where b is the 

least squares estimate of B 
Proof: Define the variate 

ie , by the relation  

   i i
- Y X        (1)ye i

B x     

It follows that, 

       



N

1i

2N

1i
ii

N

1i
ii Xye i

BXYX xxx  

                              
  

   



























  

 












N

1i

2

N

1i

2

N

1i
iiN

1i
ii X

X

y
y i

i

XY
XY x

x

x
x   

  
N

i i
i 1

X 0      (2)e x


    

 

 

n

ii
i 1

2n

i 1

b

i

y xx

xx











 

   

 

n

i i i
i 1

2n

i 1

Y B X

i

e xx x

xx





      




        [using equation(1)] 
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 

 
  

 
 

 

n n n

i i i i i
i 1 i 1 i 1

2 2 2n n n

i 1 i 1 i 1

Y

i i i

ex X x x

B
x x x x

x x xx x x

  

  

   

  
  

    
     

R.H.S of I -term is  

i.e.,    
n n

i i
i 1 i 1

Y Y 0x xx x
 

      

Since sum of the deviations from its mean is zero. 
R.H.S  of II -term is  

i.e.,  
  

 

n

i i
i 1

2n

i 1

B B

i

X xx x

xx





 





 

When n is large X  and  x  may not differ much to simplify this 

    
2n n

i i
i 1 i 1

iX x xx x x
 

      

 

 

n

i i
i 1

2n

i 1

b B         (3)

i

e xx

xx






   




 

But 

 
n

i i
i 1

e xx



(௡ିଵ)

 is an unbiased estimate of 

 
n

i i
i 1

Xe x



(ேିଵ)

  =0. by using(2)]. 

 In repeated samples of size n the sample co-variance is.

 
n

i i
i 1

e xx



(௡ିଵ)

is therefore 

distributed about a zero mean. The standard error of a sample covariance is known to be 

of order 
n

1
. This in samples of size n, 

 
n

i i
i 1

Xe x



(௡ିଵ)

will be of order  
n

1
. 

 But the quantity ,
 2N

i=1
i xx 

(𝑛−1)
 =𝑠௫ଶis of order unity in samples of size n. 

Hence from equation (3)  b- B  is of order 
n

1
. 

Theorem -7.3: If b is the least squares estimate of B and  
lr

y + b (1)y i
xX    then 

in SRS of size n,  

   22

ylr

1- f
V = 1

ny S   is provided that n is large enough so that terms of order 
n

1
 is 

negligible. 
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Proof: Define the variate 
ie as 

              i i
- x      (2)e i

BYy x     

Averaging  this over the units in the sample, we have  

         e = y - Y - B x X  

 y Y B ex X     

Substitute this value of y  in equation (1) 

   
lr

= Y + B - X + e + b X -y x x  

  
lr

= Y b- B ey X x    

From equation (2) , it is clear that she population mean 
ie  is zero. Hence e  is of order 

n

1
. But we know that  b- B  is order of 

n

1
. Since  x X  is also of order 

n

1
, their 

product  b- B  x X  is order 
1

n
. Consequently their product can be ignored relative to  

e  is in terms of order  
n

1
 are negligible.  

This gives 
lr

Y ey     
lr

Y ey    

Since  e 0E   then  2

eE  is the variance of the mean of the quantities  
ie  in a SRS . 

Hence    2
2Yy elrE E   

        2
lr

1- f
V =y S

n
e  

N
2

i
i=11- f

=    (3)
n N-1

e



 

Now     2N N
2
i

i=1 i=1
= -Y -B -Xye i xi                   [ from equation (2)] 

         N N N2 2
2

i
i=1 i=1 i=1

2 - Y - X-Y -Xyyi iB x xB i      

       N N N2 2 2
2 2

i=1 i=1 i=1
2-Y -X -Xyi x xB Bi i        

i
- Y By ix X  

 
  

   N N N2 2
2 2
i

i=1 i=1 i=1
=      (4)-Y -Xye i xB i     

                 N N2 22

i=1 i=1
= -Y -Yy yi i   

 Where 
   

   
i

N2 2

i=1

- X - Yy

-X -Yyi

i
i

x

xi





 

 

          
 
 

2

N 2

i=1

B -X

-Yyi

xi






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   2 22 2Y Xy xB ii     

   2 22

1
1

N

i
i

Yye i 


       22
1 1      (5)

y
N S      

 
Substituting (5) in (3) we have 

     22
1

1ylr

f
V y S

n



 

 
 

16.4  BIAS OF THE REGRESSION ESTIMATE:     
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16.5  BIAS AND MEAN SQUARE ERROR:  
 

 
 
16.6 ESTIMATION OF VARIANCE, CONFIDENCE INTERVAL AND 

COMPARISON WITH MEAN PER UNITESTIMATOR: 
 

For the comparisons the sample size n must be large enough so that approximation formulas 
for the variances of the ratio and regression estimates are valid. The three comparable 

variances for the estimated population mean Y  are as follows 

             22 1ylr

N n
V y S

Nn



   

             2 22 2y x y xR

N n
V RS S S SRY Nn


      

           2
y

N n
V y S

Nn


  

(1)  It is apparent that the variance of the regression estimate is smaller than that of the 
      SRS estimate unless 0  , in which case the two variances are equal. 
(2)  The variance of the regression estimate is less than that of the ratio estimate if  

2 2 22 2y x y xRS S S SR     

This is equivalent to the inequality  
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 2

0RS Sy x   (
y

S

S S

yx

x

   S y =
S

S

yx

x

,
2

S

S

yx

x

B    S y =BSx )   

 22 0x B RS  
 

 
Thus the regression estimate is more precise than the ratio estimate unless B=R. This occurs 

when the relation between y
i
 and xi

 is a straight line through the origin. 

 
16.7 REGRESSION ESTIMATOR IN STRATIFIED SAMPLING: 

 
        As with the ratio estimate, two types of regression estimates can be made in stratified 

random sampling, in the first estimate y
lrs

(s- for separate). A separate regression estimate is 

computed for each stratum mean. 
i.e.,  lrh

   (1)yy b Xh h hh x     

Then L

hlrs lrh
h 1

    (2)y yW


    
h

h
N

W
N

  

This estimate is appropriate when (it is thought that the true) regression coefficients Bh
 vary 

from stratum to stratum. The second regression estimate, 
lrc

y  (c for combined), is 

appropriate when the Bh
 are presumed to the same in all strata. To compute 

lrc
y , we first 

find ,
h hhst

yWy   
h

hhst W xx  then  

 
stlrc st

b X      (3)y y x     

When the concept is applied to each stratum, y
lrh

 is an unbiased estimate of y
h
, so that y

lrs
 

is an unbiased estimate of Y . Further, since sampling is independent in different strata, if 
follows from theorem-7.1, that  

     2 2 2 2h

h yh h yxh xhlrs h h

1
V 2 (4)fy W S b S b Sn h


     

Theorem-7.2 shows that, 




y

lrs
V  is minimized when Bb hh

 , the true regression 

coefficient in stratum h. The minimum value of the variance may be written  

 

 
























L

1h
2

xh

2

yxh2

yh
h

h2

hlrsmin

S
S

Sn
fWyV

1

 

Turing to the combined regression estimate with pre assigned b, y
lrc

 is also an unbiased 

estimate of Y . Since y
lrc

 is the usual estimate from a stratified sample for the variate 

 xhihi
Xby  . We may apply Th-5.3 to this variate, giving the result 

     h2 2 2 2
h yh yxh xhlrc

h h

1 f
V 2b     (5)y W S S b S

n


     

 2
0B RS Sx x  
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From equation (4) & (5), we observe that the difference is bh
 in equation (4) and b in 

equation (5). 
 
Q.2) Show that regression estimator is optimum? 
Ans: Consider the survey population as a random sample from a super population. The 

population vector Y is therefore a realization of a random vector  yyy
N21

,...,,y  . It is 

assumed that the joint distribution of y is such that y
i
's are independent with 

 
 

ii

2

i

α β
    (1)

y

y
i

i
V

x x

x 

    
 

 

 ,V denoting respectively expectation and variance operators w.r.t super population models. 

Hence, given the data, a model-unbiased predictor of 



N

1i
i

yy is  s i s
i s

ˆy ye U


   

Where   is
i s

ˆ yU


 
    

 
    i

i s

N n α β    (2)x


     

For all 's' with   0sP  . Hence BLUP(Best Linear Unbiased Prediction) of y for a given 's' is 

 s i s
i s

y     (2A)ˆye U




    

Where  










 

ÛÛ
'

ss
VV  linear predictors  satisfying (2). 

By the Gauss-Markoff theorem, BLUP of βα,  are βα ,

 respectively and hence. 

  is
i s

N 1     (2B)ˆˆ α̂ βU x
 



     

Where i

s s i s

,      (3)
n

yˆˆ y yα β x




     

 
  













 



si

2
si

sisi

xx

xxyy
β̂

si

 and  hence 

   
s ii si s

y N nˆ ˆye y β β
s

x x
 



 
      

 
               (  from 2A,2B and(3)) 

= n
s

y +N
s

y -Nβ̂ x


-n
s

y +nβ̂ x


+
iβ̂

S
x



  

 
s

N X     (4)ˆy β x
      

          (  from (3) and   yy isi

i nX
N
x ) 

Again, for all s, the variance of es


, 

Û
'

s
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     
2

s s s
V y y y V N Xˆe e y β x

                        
 

             22 2 2 2 2

s

1-f
V V X  =N ( ) + N X V    

n
ˆ ˆyN N β βx x

          
   

 

                   (since(  X x is constant,  V  X x =  2

X x , V β̂
 

 
 

=
2

2( )i
i s

x x






)
 

       
 2

2 2 2

2

X1-f
N ( ) (

n ( )i
i s

x

x x
 



 
 
  
   


 =

2

N 𝜎ଶ ቂ
ଵି௙

௡
+

(௑തି௫̅)మ

∑ (௫೔ି௫̅)
మ

೔∈ೞ
ቃ      → (5) 

                         (Since from(4) y=y1 ,y2 ,....yN ) 

Equation (4) states that for a given s,  is the BLUP of y and equation (5) states that the 

best fixed sample size(n) to use  is to choose a sample (say)
bss   for which X

sb
x . 

An optimum sampling design is, therefore, a, purposive sampling design. The minimum 

value of model-variance of  is then 
 

n

f1
σN

22 
. Clearly, such sampling designs are 

difficult to realize in practice. Samples satisfying the property X x  are called balanced 
samples. 
 
16.8 SUMMARY: 

 
In this chapter, we explored the regression estimator as a method of improving the 
estimation of population parameters using auxiliary information. The key idea is to exploit 
the linear relationship between the study variable Y and an auxiliary variable X to enhance 
precision. 
 The regression estimator is given by: 

 r̂egY y b X x    

where ‘b’ is the regression coefficient estimated from the sample. 
 This estimator is particularly effective when there is a strong linear correlation 

between Y and X. 
 It is approximately unbiased, and its mean square error (MSE) is often lower than 

that of the mean per unit estimator. 
 The variance of the regression estimator can be estimated, and it is used to construct 

confidence intervals for population parameters. 
 In comparison to: 

o Mean per unit estimator, the regression estimator is more efficient when 
auxiliary information is available and properly used. 

o Ratio estimator, the regression estimator is better when the line relating Y and X 
does not pass through the origin. 

 In stratified sampling, the regression estimator is applied within each stratum, leading 
to further gains in precision by reducing within-stratum variance. 

 yes



 yes



 yes


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Conclusion: 
The regression estimator is a powerful and versatile tool in survey sampling. By 
incorporating auxiliary information, it provides more reliable and precise estimates than basic 
methods. Its application in both simple random and stratified sampling frameworks makes it 
an essential technique for statisticians and researchers involved in practical data collection 
and estimation. 
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16.10 SELF-ASSESSMENT QUESTIONS: 
 

1. What is the basic principle behind the regression estimator? 
2. How is the regression estimator different from the ratio estimator? 
3. Derive the expression for the bias of the regression estimator. 
4. When is the regression estimator more efficient than the mean per unit estimator? 
5. How is the regression estimator applied in stratified sampling? 
6. Explain Regression Estimator in Stratified Sampling 
7. Explain the comparison of Regression Estimator with Mean per uit Estimator. 
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